matlab 基操~

这篇具有很好参考价值的文章主要介绍了matlab 基操~。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

MATLAB基本操作

1. 对象定义 使用sym定义单个对象、使用syms定义多个对象

2. 使用limit求极限

$$ \lim_{v \rightarrow a} f(x) $$

    limit(f,v,a) % 使用limit(f,v,a,'left')可求左极限

3. 导数 使用diff(f,v,n)对$ f(v)=v^{t-1} $求 $ n $ 阶导 $ \frac{d^nf}{d^nv} $,n缺省时,默认为1,diff(f)默认求一阶导数。

4. 定积分和不定积分 使用int(f,v)求f对变量v的不定积分,使用int(f,v,a,b)求f对变量v的定积分,a、b为积分上下标。$ \int{f(v)dv} $、$ \int^{a}_{b}{f(v)dv} $。

5. matlab函数文件定义形式

function [输出形参列表] = 函数名(输入形参列表)
    函数体
function spir_len = spirallength(d, n, lcolor)
% SPIRALLENGTH plot a circle of radius as r in the provided color and calculate its area
% 输入参数:
%   d: 螺旋的旋距
%   n: 螺旋的圈数
%   lcolor:画图线的颜色
% 输出参数:
%   spir_len:螺旋的周长
% 调用说明:
%   spirallength(d,n):以参数d,n画螺旋线,螺旋线默认为蓝色
%   spirallength(d,n,lcolor):以参数d,n,lcolor画螺旋线
%   spir_len = spirallength(d,n):计算螺旋线的周长,并以蓝色填充螺旋线
%   spir_len = spirallength(d,n,lcolor):计算螺旋线的周长,并以lcolor颜色填充螺旋线

% 版本号V1.0,编写于1999年9月9号,修改于1999年9月10号,作者:亚索

if nargin > 3
    error('输入变量过多!');
elseif nargin == 2
    lcolor = 'b'; % 默认情况下为蓝色
end

j = sqrt(-1);
phi = 0 : pi/1000 : n*2*pi;
amp = 0 : d/2000 : n*d;
spir = amp .* exp(j*phi);

if nargout == 1
    spir_len = sum(abs(diff(spir)));
    fill(real(spir), imag(spir), lcolor);
elseif nargout == 0
    plot(spir, lcolor);
else
    error('输出变量过多!');
end

axis('square');

6. matlab程序设计语句

% for循环
for 循环变量=初值:步长:终值
    循环体
end

% while循环
while 条件
    循环体
end

% if语句
if 条件
    语句组1
elseif
    语句组2
else
    语句组3
end

% switch语句
switch 表达式
   case  表达式1
         语句组1
   case  表达式2
         语句组2
      ... ...
   case   表达式m
          语句组m
   otherwise
          语句组
end

% try语句
try
   语句组1                %语句组1若正确则跳出该结构
catch
   语句组2
end

7. 矩阵操作

操作 作用
size(A) 求矩阵A的行数和列数
length(x) 返回向量x的长度
A' A的转置
A(:,n) 取矩阵A第n列数,A(n,:)取第n行
det(A) 求矩阵A的行列式
inv(A) 求A的逆
rank(A) 求A的秩
trace(A) 求A的迹
max(A)、min(A) 求A的各列最大、最小元素
mean(A) 求A各列的平均值
sum(A) 求A各列元素之和

8. matlab简单绘图

 plot函数是MATLAB中最核心的二维绘图函数,有诸多语法格式,可实现多种功能。常用格式有:

  • plot(x):缺省自变量的绘图格式,x可为向量或矩阵。
  • plot(x, y):基本格式,x和y可为向量或矩阵。
  • plot(x1, y1, x2, y2,…):多条曲线绘图格式,在同一坐标系中绘制多个图形。
  • plot(x, y,‘s’):开关格式,开关量字符串s设定了图形曲线的颜色、线型及标示符号(见下表)。

matlab 基操~,DevOps,GitHub Actions,Docker

无约束优化问题求解

fminbnd、fminunc函数输出变量解释

变量 描述
x 由优化函数求得的值. 若exitflag>0,则x为解; 否则,x不是最终解, 它只是迭代制止时优化过程的值
fval 解 x 处的目标函数值
exitflag 描述退出条件:exitflag>0,表目标函数收敛于解x处;exitflag=0,表已达到函数评价或迭代的最大次数;exitflag<0,表目标函数不收敛
output 包含优化结果信息的输出结构。Iterations:迭代次数;Algorithm:所采用的算法;FuncCount:函数评价次数

一元函数无约束优化问题-fminbnd

常用格式

$$ min f(x), x_1<x<x_2 $$

(1)x= fminbnd (fun, x1, x2) (2)x= fminbnd (fun, x1, x2 , options) (3)[x , fval]= fminbnd(...) (4)[x , fval , exitflag]= fminbnd(...) (5)[x , fval , exitflag , output]= fminbnd(...) 函数fminbnd的算法基于黄金分割法和二次插值法,它要求目标函数必须是连续函数,并可能只给出局部最优解

例子

求函数 $ f(x)=2e^{-x}sin(x) $ 在 $ 0<x<8 $ 时的最小值

% 如果求最大需要对f取反
f = @(x) (2*exp(-x)*sin(x));
[x,fval] = fminbnd(f,0,8);
x
fval

多元函数无约束优化问题-fminunc

常用格式

$$ min f(X),这里X为n维变量 $$ fminunc常用格式为: (1)x= fminunc(fun, X0); (2)x= fminunc(fun, X0,options); (3)[x,fval]= fminunc(...); (4)[x,fval,exitflag]= fminunc(...); (5)[x,fval,exitflag,output]= fminunc(...) 其中 X0为初始值

例子

求函数$ f(x_1,x_2)=(4x_1^2+2x_2^2+4x_1x_2+2x_2^2+1)e^x $的最小值,$ X_0=[-1,1] $

f = @(x) (4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1)*exp(x(1));
x0 = [-1,1];
[x,fval] = fminunc(f, x0);
x
fval

线性规划问题求解

使用linprog求解一般线性规划问题

常见问题(linprog默认求最小值) $$ minz=cX $$

$$ s.t. \begin{cases} AX\leq{b}\ Aeq\cdot{X}=beq\ VLB\leq{X}\leq{VUB} \end{cases}$$

求解命令

[x,fval] = linprog(c,A,b,Aeq,beq,VLB,VUB)

例子

$$ min z=13x_1+9x_2+10x_3+11x_4+12x_5+8x_6 $$

$$ s.t.\left{ \begin{aligned} & x_1+x_2=400\ & x_2+x_5=600\ & x_3+x_6=500\ & 0.4x_1+1.1x_2+x_3\leq{800}\ & 0.5x_4+1.2x_5+1.3x_6\leq{900}\ & x_i\geq0,i=1,2,...,6 \end{aligned} \right. $$

f = [13 9 10 11 12 8];
A =  [0.4 1.1 1 0 0 0
      0 0 0 0.5 1.2 1.3];
b = [800; 900];
Aeq=[1 0 0 1 0 0
     0 1 0 0 1 0
     0 0 1 0 0 1];
beq=[400 600 500];
vlb = zeros(6,1);
vub=[];
[x,fval] = linprog(f,A,b,Aeq,beq,vlb,vub)

使用bintprog求解0-1规划问题

matlab2014以上版本使用intlinprog求解0-1规划问题

$$ minz=cX $$

$$ s.t. \begin{cases} AX\leq{b}\ Aeq\cdot{X}=beq\ X为0-1变量 \end{cases}$$

% 命令
[x,fval] = bintprog(c,A,b,Aeq,beq)

例子

$$ min z=3x_1+7x_2-x_3+x_4 $$ $$ s.t. \begin{cases} 2x_1-x_2+x_3-x_4\geq{1}\ x_1-x_2+6x_3+4x_4\geq{8}\ 5x_1+3x_2+x_4\geq{5}\ x_i=0或1(i=1,2,3,4) \end{cases} $$

z = [3;7;-1;1];
A = [-2 1 -1 1;
     -1 1 -6 -4;
     -5 -3 0 -1];
b = [-1;-8;-5];
Aeq = [];
beq = [];

[x,fval] = bintprog(z,A,b,Aeq,beq)

数据插值与拟合

数据插值,使用interpl进行一维插值

matlab命令

yi = interpl(X,Y,xi,method)

该命令用指定的算法找出一个一元函数,然后以该函数给出xi处的值。其中x=[x1,x2,…,xn]’和 y=[y1,y2,…,yn]’两个向量分别为给定的一组自变量和函数值,用来表示已知样本点数据;xi为待求插值点处横坐标,可以是一个标量,也可以是一个向量,是向量时,必须单调;yi得到返回的对应纵坐标。

  • method可以选取以下方法之一:
    • ‘nearest’:最近邻点插值,直接完成计算;
    • ‘spline’:三次样条函数插值;
    • ‘linear’:线性插值(缺省方式),直接完成计算;
    • ‘cubic’:三次函数插值;

例子

作函数$ y=(x^2-3x+7)e^{-4x}sin(2x) $在[0,1]取间隔为0.1的点图,用插值进行实验

x=0:0.1:1;
y=(x.^2-3*x+7).*exp(-4*x).*sin(2*x);  %产生原始数据

subplot(1,2,1);
plot(x,y,x,y,'ro')    %作图
xx=0:0.02:1;  %待求插值点
yy=interp1(x,y,xx,'spline');   %此处可用nearest,cubic,spline分别试验

subplot(1,2,2)
plot(x,y,'ro',xx,yy,'b')    %作图

曲线拟合

拟合函数polyfit

p=polyfit(x,y,n)
[p,s]= polyfit(x,y,n)

说明:x,y为数据点,n为多项式阶数,返回p为幂次从高到低的多项式系数向量p。p是n+1维参数向量p(1),p(2)….那么拟合后对应的多项式即为: $$ p(1)x^n+p(2)x^{n-1}+\cdot\cdot\cdot+p(n)x+p(n+1) $$

x必须是单调的。矩阵s用于生成预测值的误差估计

多项式求值函数polyval

y=polyval(p,x)
[y,DELTA]=polyval(p,x,s)

说明:y=polyval(p,x)为返回对应自变量x在给定系数p的多项式的值; [y,DELTA]=polyval(p,x,s) 使用polyfit函数的选项输出s得出误差估计DELTA。它假设polyfit函数数据输入的误差是独立正态的,并且方差为常数。则DELTA将至少包含50%的预测值。

例子

求如下给定数据的拟合曲线 x=[0.5,1.0,1.5,2.0,2.5,3.0],y=[1.75,2.45,3.81,4.80,7.00,8.60]

x=[0.5,1.0,1.5,2.0,2.5,3.0];
y=[1.75,2.45,3.81,4.80,7.00,8.60];
plot(x,y,‘*r’)  %先观察数据点的大致形态
p=polyfit(x,y,2)  %用二次多项式拟合
x1=0.5:0.05:3.0; % 步长0.05
y1=polyval(p,x1);
plot(x,y,'*r',x1,y1,'-b')

本文由博客群发一文多发等运营工具平台 OpenWrite 发布文章来源地址https://www.toymoban.com/news/detail-838619.html

到了这里,关于matlab 基操~的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 使用 Github Actions 工作流自动部署 Github Pages

    actions顾名思义就是一堆动作,是一个持续集成服务,持续集成包含了拉代码、运行测试、编译代码、登录远程服务器,发布到第三方服务等等的操作,GitHub将这些操作称为actions。 概念:Workflows, Events, Jobs, Actions, Runners Workflows 工作流 一个 Workflow 由多个 Jobs 组成 Events 定义哪

    2024年02月07日
    浏览(73)
  • GitHub Actions自动化部署+定时百度链接推送

    # 前言 最近用VuePress搭建了一个静态网站,由于是纯静态的东西,每次修改完文章都要重新打包上传很是麻烦。虽然vuepress-theme-vdoing主题作者提供了GitHub Actions自动化部署的教程文章,但是过于简陋且是19年发布的。。 # 1. 创建一个GitHub仓库(私有仓库也可以) # 2. 设置服务器地

    2024年02月12日
    浏览(55)
  • 使用GitHub Actions 来进行项目远程服务器部署

    由于项目源码是托管在github的,而部署是放在远程服务器上,并且使用nginx部署。 现在的部署流程时,需要更新时,在本地切换到master分支,执行构建操作,拿到构建出的dist目录,将其上传到远程服务的某个nginx目录,重启nginx服务。 基于以上,使用GitHub Actions做CI/CD流程。

    2024年02月14日
    浏览(50)
  • 最佳实践-使用Github Actions来构建跨平台容器镜像

    公众号「架构成长指南」,专注于生产实践、云原生、分布式系统、大数据技术分享。 最近在写K8s的相关系列文章,因为有涉及到镜像构建,发现在Mac m1的Arm架构下构建的部分镜像,没法在X86架构下使用,不兼容。 尝试网上介绍的各种方式,都已失败告终,效果如下: 最终

    2024年02月05日
    浏览(58)
  • 如何利用GitHub Actions自动化你的开发流程

    GitHub Actions 是一个强大的自动化工具,可以帮助开发者在 GitHub 仓库中自动化构建、测试和部署工作流程。使用 GitHub Actions,你可以在代码提交到 GitHub 时自动运行软件开发工作流程。以下是如何利用 GitHub Actions 自动化你的开发流程的基本步骤: ### 1. 理解 GitHub Actions 的基本

    2024年04月29日
    浏览(44)
  • Github Actions 执行Python定时任务(时区及缓存问题处理)

    文档地址:https://docs.github.com/en/actions 这两天一直在学习Github Actions,很是兴奋,才发现这么好的东西,相见恨晚。 它是什么呢,简单讲,就是让你的Github项目具备持续集成的能力,类似于传统工具jenkins,Gitlab的CI/CD功能等,但Github Actions更加强大。 我尝试简单实践了一下,

    2024年02月09日
    浏览(60)
  • 【日常记录】自动化部署与持续交付:GitHub Actions CICD

    当我们做项目的时候,如果做完了,要发布,就需要打包,扔到服务器上,如果改了一点东西,还得打包,扔到服务器上,重复的执行 打包= 扔到服务器上 详细记录如何使用github actions自动化部署项目 自动化部署与持续交付:GitHub Actions CICD 自动化部署一般以下方式 Jenkins

    2024年02月02日
    浏览(65)
  • 10分钟 使用VitePress和GitHub Actions快速搭建发布个人博客

    VitePress官网Getting Started | VitePress VitePress 是一个静态站点生成器 (SSG),旨在构建快速、以内容为中心的网站。 Node.js (nodejs.org)Node版本18或更高版本 **使用 node -v **查看node版本 创建文件夹并进入到项目的目录 初始化项目 这里会带有设置向导 安装项目所需的 vitepress 依赖 在

    2024年02月03日
    浏览(72)
  • Github Actions实现Spring Boot自动化部署(第二弹)

    ​ 今天就来讲述一下如何使用GitHub结合Actions实现Spring Boot程序从提交代码到打包、容器化、部署全过程自动化。首先咱们得现有一个能够在本地运行的Spring Boot程序,并且在Github上拥有一个仓库。 1.1 提交代码到Github 1.2 设置服务器密钥、GitHub私钥、DockerHub账号 secret value rem

    2024年02月08日
    浏览(47)
  • 从零用VitePress搭建博客教程(7) -– 如何用Github Actions自动化部署到Github Pages?

    接上一节: 从零用VitePress搭建博客教程(6) -– 第三方组件库的使用和VitePress搭建组件库文档  我们搭建完成vitePress后,那么接下来就是如何部署到线上服务器,这里使用Github Pages,免得自己购买服务器,当然你也可以自己购买服务器来部署(比如阿里云服务器)。 在部署之

    2024年02月08日
    浏览(73)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包