我在代码随想录|写代码Day33 | 动态规划| 路径问题| 62.不同路径,63. 不同路径 II,343. 整数拆分

这篇具有很好参考价值的文章主要介绍了我在代码随想录|写代码Day33 | 动态规划| 路径问题| 62.不同路径,63. 不同路径 II,343. 整数拆分。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

我在代码随想录|写代码Day33 | 动态规划| 路径问题| 62.不同路径,63. 不同路径 II,343. 整数拆分,数据结构与算法,动态规划,代理模式,算法

🔥博客介绍`: 27dCnc

🎥系列专栏: <<数据结构与算法>> << 算法入门>> << C++项目>>

🎥 当前专栏: << 算法入门>>

专题 : 数据结构帮助小白快速入门算法
👍👍👍👍👍👍👍👍👍👍👍👍
☆*: .。. o(≧▽≦)o .。.:*☆

❤️感谢大家点赞👍收藏⭐评论✍️

我在代码随想录|写代码Day33 | 动态规划| 路径问题| 62.不同路径,63. 不同路径 II,343. 整数拆分,数据结构与算法,动态规划,代理模式,算法

学习目标:

今日学习打卡
我在代码随想录|写代码Day33 | 动态规划| 路径问题| 62.不同路径,63. 不同路径 II,343. 整数拆分,数据结构与算法,动态规划,代理模式,算法

  • 代码随想录 - 动态规划

学习时间:

  • 周一至周五晚上 7 点—晚上9点
  • 周六上午 9 点-上午 11 点
  • 周日下午 3 点-下午 6 点

学习内容:

  1. 不同路径
  2. 不同路径 II
  3. 整数拆分

内容详细:

62.不同路径

考点: 动态规划 数学 深度优先搜索(dfs)
我在代码随想录|写代码Day33 | 动态规划| 路径问题| 62.不同路径,63. 不同路径 II,343. 整数拆分,数据结构与算法,动态规划,代理模式,算法
解题思路
高中时候的组合规律,当然我们不能直接这样写我们要进行动态规划分析

首先看到题目是想到dfs

class Solution {
private:
    int dfs(int i, int j, int m, int n) {
        if (i > m || j > n) return 0; // 越界了
        if (i == m && j == n) return 1; // 找到一种方法,相当于找到了叶子节点
        return dfs(i + 1, j, m, n) + dfs(i, j + 1, m, n);
    }
public:
    int uniquePaths(int m, int n) {
        return dfs(1, 1, m, n);
    }
};

但是超时

开始动态规划

  1. 确定dp数组以及下标的含义
dp[i][j] :表示从(00)出发,到(i, j) 有dp[i][j]条不同的路径。
  1. 确定递推公式(到这一步的方式)

想要求dp[i][j],只能有两个方向来推导出来,即dp[i - 1][j] 和 dp[i][j - 1]。

此时在回顾一下 dp[i - 1][j] 表示啥,是从(0, 0)的位置到(i - 1, j)有几条路径,dp[i][j - 1]同理。

那么很自然,dp[i][j] = dp[i - 1][j] + dp[i][j - 1],因为dp[i][j]只有这两个方向过来。

  1. dp数组的初始化
    这个就是高中的知识点
for (int i = 0; i < m; i++) dp[i][0] = 1;
for (int j = 0; j < n; j++) dp[0][j] = 1;
  1. 确定遍历顺序
    这里要看一下递推公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1],dp[i][j]都是从其上方和左方推导而来,那么从左到右一层一层遍历就可以了。

这样就可以保证推导dp[i][j]的时候,dp[i - 1][j] 和 dp[i][j - 1]一定是有数值的。

  1. 举例推导dp数组
    我在代码随想录|写代码Day33 | 动态规划| 路径问题| 62.不同路径,63. 不同路径 II,343. 整数拆分,数据结构与算法,动态规划,代理模式,算法
    最终代码
class Solution {
public:
    int uniquePaths(int m, int n) {
        int dp[m][n];
        dp[0][0] = 0;
        for (int i = 0; i < m; i++) dp[i][0] = 1;
        for (int j = 0; j < n; j++) dp[0][j] = 1;
        for (int i = 1;i < m; i++) {
            for (int j = 1; j < n; j++) {
                dp[i][j] = dp[i-1][j] + dp[i][j - 1];
            }
        }
        return dp[m - 1][n - 1];
    }
};

63. 不同路径 II

题目考点: 动态规划

我在代码随想录|写代码Day33 | 动态规划| 路径问题| 62.不同路径,63. 不同路径 II,343. 整数拆分,数据结构与算法,动态规划,代理模式,算法

解题思路
和上一题一样,只是多了障碍物,可以直接跳过,
如果遇到障碍物 continue

if (obstacleGrid[i][j] == 1) {continue;}

i 代码

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        int l,r;
        int m =obstacleGrid.size();
        int n = obstacleGrid[0].size();
        int dp[m][n];
        if (obstacleGrid[m - 1][n - 1] == 1 || obstacleGrid[0][0] == 1){
            return 0;
        }
        memset(dp,0,sizeof(dp));
        for (int i = 0; i < m && !obstacleGrid[i][0]; i++) dp[i][0] = 1;
        for (int j = 0; j < n && !obstacleGrid[0][j]; j++) dp[0][j] = 1;
        for (int i = 1;i < m; i++) {
            for (int j = 1; j < n; j++) {
                if (obstacleGrid[i][j] == 1) {continue;}
                dp[i][j] = dp[i-1][j] + dp[i][j - 1];
            }
        }
        return dp[m - 1][n - 1];
    }
};

ii 代码

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        if (obstacleGrid[0][0] == 1)
            return 0;
        vector<int> dp(obstacleGrid[0].size());
        for (int j = 0; j < dp.size(); ++j)
            if (obstacleGrid[0][j] == 1)
                dp[j] = 0;
            else if (j == 0)
                dp[j] = 1;
            else
                dp[j] = dp[j-1];

        for (int i = 1; i < obstacleGrid.size(); ++i)
            for (int j = 0; j < dp.size(); ++j){
                if (obstacleGrid[i][j] == 1)
                    dp[j] = 0;
                else if (j != 0)
                    dp[j] = dp[j] + dp[j-1];
            }
        return dp.back();
    }
};

343. 整数拆分

题目考点: 动态规划
我在代码随想录|写代码Day33 | 动态规划| 路径问题| 62.不同路径,63. 不同路径 II,343. 整数拆分,数据结构与算法,动态规划,代理模式,算法

解题思路

可以拆分成多个数据对动态规划实行贪心,max就是贪心的具象化,(个人理解)

其他步骤省,这里详细讲解

  • 确定递推公式

可以想 dp[i]最大乘积是怎么得到的呢?

其实可以从1遍历j,然后有两种渠道得到dp[i].

一个是j * (i - j) 直接相乘。

一个是j * dp[i - j],相当于是拆分(i - j),对这个拆分不理解的话,可以回想dp数组的定义。

那有同学问了,j怎么就不拆分呢?

j是从1开始遍历,拆分j的情况,在遍历j的过程中其实都计算过了。那么从1遍历j,比较(i - j) * j和dp[i - j] * j 取最大的。
递推公式:

dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));

也可以这么理解,j * (i - j) 是单纯的把整数拆分为两个数相乘,而j * dp[i - j]是拆分成两个以及两个以上的个数相乘。

  • 如果定义dp[i - j] * dp[j] 也是默认将一个数强制拆成4份以及4份以上了。

  • 所以递推公式:dp[i] = max({dp[i], (i - j) * j, dp[i - j] * j});

  • 那么在取最大值的时候,为什么还要比较dp[i]呢?

因为在递推公式推导的过程中,每次计算dp[i],取最大的而已。

class Solution {
public:
    int integerBreak(int n) {
        if(n < 4) return n/2 * (n - n/2);
        int dp[n+4];
        memset(dp,0,sizeof dp);
        dp[2] = 1;
        for (int i = 3; i <= n ; i++) {
            for (int j = 1; j <= i / 2; j++) {
                dp[i] = max({dp[i], (i - j) * j, dp[i - j] * j});
            }
        }
        return dp[n];
    }
};

学习产出:

  • 技术笔记 2 遍
  • CSDN 技术博客 3 篇
  • 习的 vlog 视频 1 个

我在代码随想录|写代码Day33 | 动态规划| 路径问题| 62.不同路径,63. 不同路径 II,343. 整数拆分,数据结构与算法,动态规划,代理模式,算法

重磅消息:

GTP - 4 最新版接入服务他来了 点击链接即可查看详细

GTP - 4 搭建教程

🔥如果此文对你有帮助的话,欢迎💗关注、👍点赞、⭐收藏、✍️评论,支持一下博主~文章来源地址https://www.toymoban.com/news/detail-838681.html

到了这里,关于我在代码随想录|写代码Day33 | 动态规划| 路径问题| 62.不同路径,63. 不同路径 II,343. 整数拆分的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Day39 代码随想录(1刷) 动态规划 0-1背包

    题目描述 小明是一位科学家,他需要参加一场重要的国际科学大会,以展示自己的最新研究成果。他需要带一些研究材料,但是他的行李箱空间有限。这些研究材料包括实验设备、文献资料和实验样本等等,它们各自占据不同的空间,并且具有不同的价值。  小明的行李空间

    2024年04月23日
    浏览(52)
  • 【Day52】代码随想录之动态规划_打家劫舍

    动态规划理论基础 动规五部曲: 确定dp数组 下标及dp[i] 的含义。 递推公式:比如斐波那契数列 dp[i] = dp[i-1] + dp[i-2]。 初始化dp数组。 确定遍历顺序:从前到后or其他。 打印。 出现结果不正确: 打印dp日志和自己想的一样:递推公式、初始化或者遍历顺序出错。 打印dp日志和

    2024年02月22日
    浏览(52)
  • 【Day42】代码随想录之动态规划0-1背包_416. 分割等和子集

    动态规划理论基础 动规五部曲: 确定dp数组 下标及dp[i] 的含义。 递推公式:比如斐波那契数列 dp[i] = dp[i-1] + dp[i-2]。 初始化dp数组。 确定遍历顺序:从前到后or其他。 推导dp数组。 出现结果不正确: 打印dp日志和自己想的一样:递推公式、初始化或者遍历顺序出错。 打印

    2024年02月20日
    浏览(68)
  • 【Day45】代码随想录之动态规划part7—爬楼梯(进阶)、零钱兑换、完全平方数

    今天又是补打卡的一天,开冲!!! 今日任务: 70.爬楼梯(进阶) 322.零钱兑换 279.完全平方数 这道题之前做过一次,但是可以采用完全背包的问题来分析一遍。 卡玛网题目:【57.爬楼梯】 这个题目其实是更难了一点,因为前面的题目都是每次要不爬1阶楼梯,要不爬2阶楼

    2024年03月25日
    浏览(53)
  • 【Day53】代码随想录之动态规划part10——买卖股票的最佳时机、买卖股票的最佳时机II

    昨天已经把打家劫舍的问题解决了,最后一个题目涉及到树形dp比较难(等到二刷的时候再重点看下),今天的任务是解决股票问题。 今日任务: 121.买卖股票的最佳时机 122.买卖股票的最佳时机II Leetcode题目:【121.买卖股票的最佳时机】 因为此题中买卖股票只能买卖一次。

    2024年03月15日
    浏览(95)
  • 代码随想录 Day35 动态规划04 01背包问题和完全背包问题 LeetCode T416 分割等和子集

    说到背包问题大家都会想到使用动规的方式来求解,那么为什么用动规呢, dp数组代表什么呢 ? 初始化是什么 , 遍历方式又是什么 ,这篇文章笔者将详细讲解背包问题的经典例题0-1背包问题和完全背包问题的解题方式,希望能帮助到大家 有人一提到背包问题就只会使用动态规划来

    2024年02月06日
    浏览(76)
  • 我在代码随想录|写代码Day7之454.四数相加II ,​ 383. 赎金信​,​ 15. 三数之和​

    题目  解题思路 四个数字相加的和为0,我们要选俩数组,让他们的笛卡尔积储存在哈希表中,然后我们要找的是这俩数和的相反数,然后就是将后面俩数组相加在后面的数组和中找相反数.   解题思路 题目意思是让在字符串1中找到字母组成字符串2所以找字符串1的数量.所以可以用

    2024年01月20日
    浏览(40)
  • 【Day43】代码随想录之动态规划0-1背包_1049. 最后一块石头的重量 II_494. 目标和_ 474.一和零

    动态规划理论基础 动规五部曲: 确定dp数组 下标及dp[i] 的含义。 递推公式:比如斐波那契数列 dp[i] = dp[i-1] + dp[i-2]。 初始化dp数组。 确定遍历顺序:从前到后or其他。 打印。 出现结果不正确: 打印dp日志和自己想的一样:递推公式、初始化或者遍历顺序出错。 打印dp日志和

    2024年02月22日
    浏览(49)
  • 代码随想录Day32 动态规划01 LeetCodeT509 斐波那契数列 T70 爬楼梯 T746 爬楼梯的最小消耗

    动态规划首先可以解决的问题有背包问题,打家劫舍问题,股票问题,子序列问题等,主要是将一个大的问题切分成多个重叠的子问题,所以动态规划一定是上一个状态递推过来的,有一个重要的 状态转移方程, 但是这也并不是解题的全部,我们将动态规划的题目基本分为五步来完成

    2024年02月06日
    浏览(71)
  • 代码随想录Day36 动态规划05 LeetCode T1049最后一块石头的重量II T494 目标和 T474 一和零

    理论基础  : 代码随想录Day34 LeetCode T343整数拆分 T96 不同的二叉搜索树-CSDN博客 1.明白dp数组的含义 2.明白递推公式的含义 3.初始化dp数组 4.注意dp数组的遍历顺序 5.打印dp数组排错 题目链接:1049. 最后一块石头的重量 II - 力扣(LeetCode) 这题我们仍然采用动规五部曲来写,这题和

    2024年02月06日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包