DS:树及二叉树的相关概念

这篇具有很好参考价值的文章主要介绍了DS:树及二叉树的相关概念。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

DS:树及二叉树的相关概念,数据结构,数据结构,开发语言,笔记,c语言

                                                 创作不易,兄弟们来波三连吧!! 

一、树的概念及结构

1.1 树的概念

          树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。

DS:树及二叉树的相关概念,数据结构,数据结构,开发语言,笔记,c语言

1、有一个特殊的结点,称为根结点,根节点没有前驱结点
2、除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i<= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继(每个孩子只能有一个父亲,每个父亲可以有多个孩子)
3、因此,树是递归定义的。(树可以分成2部分,1部分是父亲节点,1部分是N颗子树,如果子树不是叶子,那么子树可以继续分成父节点和子树

注意:树结构中,子树之间不能有交集,否则就不是树结构!!

DS:树及二叉树的相关概念,数据结构,数据结构,开发语言,笔记,c语言

1.2 树的相关名词

树的相关名词是依照树加上人类的亲缘关系表述的!

DS:树及二叉树的相关概念,数据结构,数据结构,开发语言,笔记,c语言

节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为6
叶节点或终端节点:度为0的节点称为叶节点; 如上图:B、C、H、I...等节点为叶节点
非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G...等节点为分支节点
双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点
孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点
兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点
树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6
节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
树的高度或深度:树中节点的最大层次; 如上图:树的高度为4
堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点
节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先
子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙
森林:由m(m>0)棵互不相交的树的集合称为森林;

以上标红的是博主认为比较重要的。

1.3 树的表示方法

      树的结构相比较于以往的其他结构就比较复杂了,要存储起来表示就比较有难度,不仅要保存值域,也要保存节点和节点之间的关系。

如果我们知道节点的度,那么我们就可以根据这个度来决定我们的结构体中需要有多少个孩子指针!!但是如果我们不知道节点的度,我们就有了以下方法来表示:

1.3.1 双亲表示法

实现:定义数组结构存放树的结点,每个结点含两个域:
数据域:存放结点本身数据信息。
双亲域:指示本结点的双亲结点在数组中的位置。(可以存放双亲的下标,也可以存放双亲的指针

DS:树及二叉树的相关概念,数据结构,数据结构,开发语言,笔记,c语言

      这样的存储结构,根据结点parent指针很容易找到它的双亲结点,所用时间复杂度为O(1),直到parent为-1时,找到了树的根结点,但是如果我们想要知道孩子的节点,那么唯一的方法就是遍历!!

特点:找双亲容易,找孩子难 

1.3.2 孩子表示法

具体办法是:把每个结点的孩子结点排列起来,看成是一个线性表,以单链表作存储结构,则n个结点有n个孩子链表(叶子结点的孩子链表为空),然后n个头指针又组成一个线性表,采用顺序存储结构,存放进一个一维数组中

DS:树及二叉树的相关概念,数据结构,数据结构,开发语言,笔记,c语言

特点:找孩子易,找双亲难

       这样的结构对于我们要查找某个结点的某个孩子,或者找某个结点的兄弟,只需要查找这个结点的孩子单链表即可。对于遍历整棵树也是很方便的,对头结点的数组循环即可。

1.3.3 孩子双亲表示法

就是把上面两种方法结合一下

DS:树及二叉树的相关概念,数据结构,数据结构,开发语言,笔记,c语言

即在链表表头再增加一个数据域存储双亲的下标,用空间换取方便! 

1.3.4 左孩子右兄弟表示法

但是我们用的最多的还是左孩子右兄弟法,因为相关的结构体只需要1个指向兄弟的指针,1个指向第一个孩子的指针,一个数据域就可以解决问题了!

typedef int DataType;
struct Node
{
struct Node* _firstChild1; // 第一个孩子结点
struct Node* _pNextBrother; // 指向其下一个兄弟结点
DataType _data; // 结点中的数据域
};

DS:树及二叉树的相关概念,数据结构,数据结构,开发语言,笔记,c语言

DS:树及二叉树的相关概念,数据结构,数据结构,开发语言,笔记,c语言

1.4 树在实际中的应用

就是文件系统中的目录树结构!!

DS:树及二叉树的相关概念,数据结构,数据结构,开发语言,笔记,c语言

     我们打开磁盘,在底层就是通过磁盘地孩子指针找到第一个孩子,然后再通过第一个孩子的兄弟指针开始逐个逐个遍历后面的兄弟节点,才能把整个目录给列举出来, 

    如果我们新建一个文件夹,就是让该文件目录下的兄弟节点指向NULL的文件指向这个新建文件,然后新建文件的兄弟指针指向NULL,当然这个也要看情况,有时候文件排序的方式也是不同的

二、二叉树的概念及结构

    实际中我们的树一般只用在这个目录树结构,而我们最常用的是树中的一个比较特殊的群体——二叉树

2.1 二叉树的概念

一棵二叉树是结点的一个有限集合,该集合:
1. 或者为空
2. 由一个根节点加上两棵别称为左子树和右子树的二叉树组成

DS:树及二叉树的相关概念,数据结构,数据结构,开发语言,笔记,c语言

二叉树的特点:

1、 二叉树不存在度大于2的节点

2、二叉树的左右子树不能颠倒

2.2 特殊的二叉树

DS:树及二叉树的相关概念,数据结构,数据结构,开发语言,笔记,c语言

1. 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是
说,如果一个二叉树的层数为K,且结点总数是 ,则它就是满二叉树。
2. 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。

2.3 二叉树的性质

1. 若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有2^(i-1)个结点.

2. 若规定根节点的层数为1,则深度为h的二叉树的最大结点数是2^h-1

DS:树及二叉树的相关概念,数据结构,数据结构,开发语言,笔记,c语言
3. 对任何一棵二叉树, 如果度为0其叶结点个数为n0, 度为2的分支结点个数为n2 ,则有总是有n0=n2+1

DS:树及二叉树的相关概念,数据结构,数据结构,开发语言,笔记,c语言
4. 若规定根节点的层数为1,具有n个结点的满二叉树的深度,h=log(N+1)(ps: 是log以2
为底,n+1为对数)
5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对于序号为i的结点有:

1. 若i>0,i位置节点的双亲序号:(i-1)/2;i=0,i为根节点编号,无双亲节点
2. 若2i+1<n,左孩子序号:2i+1,2i+1>=n否则无左孩子
3. 若2i+2<n,右孩子序号:2i+2,2i+2>=n否则无右孩子

2.4  二叉树的存储方式

2.4.1 顺序存储

          顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空间的浪费。而现实中使用中只有堆才会使用数组来存储,关于堆我们后面的章节会专门讲解。二叉树顺序存储在物理上是一个数组,在逻辑上是一颗二叉树。
DS:树及二叉树的相关概念,数据结构,数据结构,开发语言,笔记,c语言

一般来说,顺序存储只适用于完全二叉树!! 

2.4.2 链式存储

        二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址 。链式结构又分为二叉链和三叉链。DS:树及二叉树的相关概念,数据结构,数据结构,开发语言,笔记,c语言

先介绍到这里了!!

关于存储方式的详细介绍,后面会发布文章进行学习的

感谢支持!!

 DS:树及二叉树的相关概念,数据结构,数据结构,开发语言,笔记,c语言文章来源地址https://www.toymoban.com/news/detail-839170.html

到了这里,关于DS:树及二叉树的相关概念的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【数据结构】树、二叉树的概念和二叉树的顺序结构及实现

    之前我们学习了顺序表、链表以及栈和队列这些数据结构,但这些数据结构都是线性的(一对一)。接下来要学习 非线性的数据结构——树(二叉树) ,相比前面的,树的结构更加复杂,话不多说,直接进入正题吧。 树是一种 非线性的数据结构 ,它是 一对多(也有可能是

    2024年02月07日
    浏览(42)
  • 【数据结构】二叉树的基本概念

    树是一种非线性的数据结构,它是由n(n=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的 子树不能有交集,就是不能有闭环.N个节点两个一条边,所以是N-1个边,父节点的概念在下面讲. 节点的度

    2024年02月08日
    浏览(45)
  • 【数据结构入门】-二叉树的基本概念

    个人主页:平行线也会相交 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 平行线也会相交 原创 收录于专栏【数据结构初阶(C实现)】 今天的内容可是一个大头,比以往学的内容上了一个档次。大家对于这块内容一定要好好学,不是很理解的地方一定要及时解决,要不然到

    2023年04月10日
    浏览(82)
  • 爱上数据结构:二叉树的基本概念

    ​ ​ 🔥个人主页 : guoguoqiang. 🔥 专栏 : 数据结构 ​ 树是一种非线性的数据结构,它是由n(n=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因 为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。 没有前驱节点的结点叫做根结点 在树中,子树不

    2024年04月14日
    浏览(48)
  • 数据结构--线索二叉树的概念

    中序遍历序列:D G B E A F C ①如何找到指定结点p在中序遍历序列中的前驱? ②如何找到p的中序后继? 思路: 从根节点出发,重新进行一次中序遍历,指针q记录当前访问的结点,指针pre记录上一个被访问的结点 ①当q p时,pre为前驱 ②当pre p时,q为后继 缺点 : 找前驱、后继很不方便

    2024年02月13日
    浏览(49)
  • 数据结构入门 — 二叉树的概念、性质及结构

    本文属于数据结构专栏文章,适合数据结构入门者学习,涵盖数据结构基础的知识和内容体系,文章在介绍数据结构时会配合上 动图演示 ,方便初学者在学习数据结构时理解和学习,了解数据结构系列专栏点击下方链接。 博客主页:Duck Bro 博客主页 系列专栏:数据结构专栏

    2024年02月07日
    浏览(36)
  • 【数据结构】【算法】二叉树、二叉排序树、树的相关操作

    树结构是以分支关系定义的一种层次结构,应用树结构组织起来的数据,逻辑上都具有明显的层次关系。 操作系统中的文件管理系统、网络系统中的域名管理、数据库系统中的索引管理等都使用了树结构来组织和管理数据。 树 Tree 是由n个节点组成的有限集合。在任意一颗非

    2024年02月04日
    浏览(54)
  • 【数据结构】——树和二叉树的相关习题

    1、设高度为h的二叉树上只有度为0和度为2的结点,则该二叉树中所包含的结点数至少为(),最多为()。 A、h ;2 h -1 B、2h-1 ; 2 h -1 C、2h+1; 2 h-1 -1 D、h+1;2 h -1 解析: (B) 最少的情况下,除了根结点该层为1个结点以外,其余h-1层都有2个结点,得2(h-1),即2(h-1)+1=2h-1。

    2024年02月03日
    浏览(44)
  • Java——二叉树的最近公共祖先及二叉搜索树介绍

    目录 二叉树的最近公共祖先 题目  思路一:如果给定的是一颗二叉搜索树, 思路二:假设是孩子双亲表示法  二叉搜索树 定义Node类 查找 删除 插入 给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。 百度百科中最近公共祖先的定义为:“对于有根树 T 的两个节点

    2023年04月08日
    浏览(39)
  • 初级数据结构(五)——树和二叉树的概念

        文中代码源文件已上传:数据结构源码  -上一篇 初级数据结构(四)——队列        |        初级数据结构(六)——堆 下一篇-         自然界中的树由根部开始向上生长,随机长出分支,分支之上又可长出分支,层层递进,直至长出叶子则此分支结束。   

    2024年02月04日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包