大数据毕设分享 基于opencv的银行卡识别

这篇具有很好参考价值的文章主要介绍了大数据毕设分享 基于opencv的银行卡识别。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


1 前言

🔥 今天学长向大家分享一个毕业设计项目

🚩 毕业设计 基于opencv的银行卡识别

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

项目运行效果:

毕业设计 机器视觉opencv银行卡识别系统

项目获取:

https://gitee.com/sinonfin/algorithm-sharing文章来源地址https://www.toymoban.com/news/detail-839193.html

2 算法设计流程

银行卡卡号识别技术原理是先对银行卡图像定位,保障获取图像绝对位置后,对图像进行字符分割,然后将分割完成的信息与模型进行比较,从而匹配出与其最相似的数字。主要流程图如图

大数据毕设分享 基于opencv的银行卡识别,python,毕业设计,毕设,大数据

1.银行卡号图像
由于银行卡卡号信息涉及个人隐私,作者很难在短时间内获取大量的银行卡进行测试和试验,本文即采用作者个人及模拟银行卡进行卡号识别测试。

2.图像预处理
图像预处理是在获取图像后必须优先进行的技术性处理工作,先对银行卡卡号图像进行色彩处理,具体做法与流程是先将图像灰度化,去掉图像识别上无用的信息,然后利用归一化只保留有效的卡号信息区域。

3.字符分割
字符分割是在对图像进行预处理后,在获取有效图像后对有效区域进行进一步细化处理,将图像分割为最小识别字符单元。

4.字符识别
字符识别是在对银行卡卡号进行字符分割后,利用图像识别技术来对字符进行分析和匹配,本文作者利用的模板匹配方法。

2.1 颜色空间转换

由于银行卡卡号识别与颜色无关,所以银行卡颜色是一个无用因素,我们在图像预处理环节要先将其过滤掉。另外,图像处理中还含有颜色信息,不仅会造成空间浪费,增加运算量,降低系统的整体效率,还会给以后的图像分析和处理带来干扰。因此,有必要利用灰度处理来滤除颜色信息。

灰度处理的实质是将颜色信息转化为亮度信息,即将原始的三维颜色信息还原为一维亮度信息。灰度化的思想是用灰度值g来表示原始彩色图像的R(绿色)、g(红色)和B(蓝色)分量的值,具体的流程设计如图

大数据毕设分享 基于opencv的银行卡识别,python,毕业设计,毕设,大数据

2.2 边缘切割

对于采集到的银行卡号图像,由于背景图案的多样性和卡号字体的不同,无法直接对卡号图像进行分割。分割前要准确定位卡号,才能得到有效区域。数字字符所在的区域有许多像素。根据该特征,通过设置阈值来确定原始图像中卡号图像的区域。银行卡图像的切边处理设计如图

大数据毕设分享 基于opencv的银行卡识别,python,毕业设计,毕设,大数据

2.3 模板匹配

模板匹配是一种将需要识别的字符与已有固定模板进行匹配的算法技术,该技术是将已经切割好的字符图像逐个与模板数字图像进行对比分析,其原理就是通过数字相似度来衡量两个字符元素,将目标字符元素逐个与模板数字图像进行匹配,找到最接近的数字元素即可。匹配计算量随特征级别的增加而减少。根据第一步得到的特征,选择第二种相关计算方法来解决图像匹配问题。银行卡模板匹配流程设计如图

大数据毕设分享 基于opencv的银行卡识别,python,毕业设计,毕设,大数据

2.4 卡号识别

银行卡卡号识别有其独有的特性,因为目前市面上大多数银行卡卡号是凹凸不平的数字形式,如果使用传统的计算机字符识别技术已显然不适用,本文针对银行卡此类特点,研究了解决此类问题的识别方案。从银行卡待识别的凸凹字符进行预处理,然后根据滑块算法逐个窗口对银行卡字符进行匹配识别,卡号识别一般从切割后的图像最左端开始,设定截图选定框大小为64*48像素,因为银行卡所需要识别的字符一般为45像素左右。故而以此方式循环对卡片上所有数字进行匹配、识别,如果最小值大于设置的阈值,我们将认为这里没有字符,这是一个空白区域,并且不输出字符。同时,窗口位置J向下滑动,输出f<19&&j+20<图像总长度并判断,最后循环得到字符数f、j。

大数据毕设分享 基于opencv的银行卡识别,python,毕业设计,毕设,大数据

3 银行卡字符定位 - 算法实现

首先就是将整张银行卡号里面的银行卡号部分进行识别,且分出来,这一个环节学长用的技术就是faster-rcnn的方法

将目标识别部分的银行卡号部门且分出来,进行保存

主程序的代码如下(非完整代码):

#!/usr/bin/env python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import os
import cv2
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from lib.config import config as cfg
from lib.utils.nms_wrapper import nms
from lib.utils.test import im_detect
from lib.nets.vgg16 import vgg16
from lib.utils.timer import Timer

os.environ["CUDA_VISIBLE_DEVICES"] = '0'   #指定第一块GPU可用
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.8  # 程序最多只能占用指定gpu50%的显存
config.gpu_options.allow_growth = True      #程序按需申请内存
sess = tf.Session(config = config)

CLASSES = ('__background__','lb')
NETS = {'vgg16': ('vgg16_faster_rcnn_iter_70000.ckpt',), 'res101': ('res101_faster_rcnn_iter_110000.ckpt',)}
DATASETS = {'pascal_voc': ('voc_2007_trainval',), 'pascal_voc_0712': ('voc_2007_trainval+voc_2012_trainval',)}

def vis_detections(im, class_name, dets, thresh=0.5):
    """Draw detected bounding boxes."""
    inds = np.where(dets[:, -1] >= thresh)[0]
    if len(inds) == 0:
        return

    im = im[:, :, (2, 1, 0)]
    fig, ax = plt.subplots(figsize=(12, 12))
    ax.imshow(im, aspect='equal')
    sco=[]
    for i in inds:
        score = dets[i, -1]
        sco.append(score)
    maxscore=max(sco)
    # print(maxscore)成绩最大值
    for i in inds:
        # print(i)
        score = dets[i, -1]
        if score==maxscore:
            bbox = dets[i, :4]
            # print(bbox)#目标框的4个坐标
            img = cv2.imread("data/demo/"+filename)
            # img = cv2.imread('data/demo/000002.jpg')
            sp=img.shape
            width = sp[1]
            if bbox[0]>20 and bbox[2]+20<width:
                cropped = img[int(bbox[1]):int(bbox[3]), int(bbox[0]-20):int(bbox[2])+20] # 裁剪坐标为[y0:y1, x0:x1]
            if bbox[0]<20 and bbox[2]+20<width:
                cropped = img[int(bbox[1]):int(bbox[3]), int(bbox[0]):int(bbox[2])+20] # 裁剪坐标为[y0:y1, x0:x1]
            if bbox[0] > 20 and bbox[2] + 20 > width:
                cropped = img[int(bbox[1]):int(bbox[3]), int(bbox[0] - 20):int(bbox[2])]  # 裁剪坐标为[y0:y1, x0:x1]
            path = 'cut1/'
            # 重定义图片的大小
            res = cv2.resize(cropped, (1000, 100), interpolation=cv2.INTER_CUBIC)  # dsize=(2*width,2*height)
            cv2.imwrite(path+str(i)+filename, res)
            ax.add_patch(plt.Rectangle((bbox[0], bbox[1]),
                              bbox[2] - bbox[0],
                              bbox[3] - bbox[1], fill=False,
                              edgecolor='red', linewidth=3.5)
            )
            ax.text(bbox[0], bbox[1] - 2,
                    '{:s} {:.3f}'.format(class_name, score),
                    bbox=dict(facecolor='blue', alpha=0.5),
                    fontsize=14, color='white')

            ax.set_title(('{} detections with '
                          'p({} | box) >= {:.1f}').format(class_name, class_name,thresh),
                         fontsize=14)
    plt.axis('off')
    plt.tight_layout()
    plt.draw()


def demo(sess, net, image_name):
    """Detect object classes in an image using pre-computed object proposals."""

    # Load the demo image
    im_file = os.path.join(cfg.FLAGS2["data_dir"], 'demo', image_name)
    im = cv2.imread(im_file)
    # Detect all object classes and regress object bounds
    timer = Timer()
    timer.tic()
    scores, boxes = im_detect(sess, net, im)
    timer.toc()
    print('Detection took {:.3f}s for {:d} object proposals'.format(timer.total_time, boxes.shape[0]))

    # Visualize detections for each class
    CONF_THRESH = 0.1
    NMS_THRESH = 0.1
    for cls_ind, cls in enumerate(CLASSES[1:]):
        cls_ind += 1  # because we skipped background
        cls_boxes = boxes[:, 4 * cls_ind:4 * (cls_ind + 1)]
        cls_scores = scores[:, cls_ind]
        # print(cls_scores)#一个300个数的数组
        #np.newaxis增加维度  np.hstack将数组拼接在一起
        dets = np.hstack((cls_boxes,cls_scores[:, np.newaxis])).astype(np.float32)
        keep = nms(dets, NMS_THRESH)
        dets = dets[keep, :]

        vis_detections(im, cls, dets, thresh=CONF_THRESH)

def parse_args():
    """Parse input arguments."""
    parser = argparse.ArgumentParser(description='Tensorflow Faster R-CNN demo')
    parser.add_argument('--net', dest='demo_net', help='Network to use [vgg16 res101]',
                        choices=NETS.keys(), default='vgg16')
    parser.add_argument('--dataset', dest='dataset', help='Trained dataset [pascal_voc pascal_voc_0712]',
                        choices=DATASETS.keys(), default='pascal_voc')
    args = parser.parse_args()

    return args


if __name__ == '__main__':
    args = parse_args()

    # model path
    demonet = args.demo_net
    dataset = args.dataset

    #tfmodel = os.path.join('output', demonet, DATASETS[dataset][0], 'default', NETS[demonet][0])
    tfmodel = r'./default/voc_2007_trainval/cut1/vgg16_faster_rcnn_iter_8000.ckpt'
    # 路径异常提醒
    if not os.path.isfile(tfmodel + '.meta'):
        print(tfmodel)
        raise IOError(('{:s} not found.\nDid you download the proper networks from '
                       'our server and place them properly?').format(tfmodel + '.meta'))

    # set config
    tfconfig = tf.ConfigProto(allow_soft_placement=True)
    tfconfig.gpu_options.allow_growth = True

    # init session
    sess = tf.Session(config=tfconfig)
    # load network
    if demonet == 'vgg16':
        net = vgg16(batch_size=1)
    # elif demonet == 'res101':
        # net = resnetv1(batch_size=1, num_layers=101)
    else:
        raise NotImplementedError
    net.create_architecture(sess, "TEST", 2,
                        tag='default', anchor_scales=[8, 16, 32])
    saver = tf.train.Saver()
    saver.restore(sess, tfmodel)

    print('Loaded network {:s}'.format(tfmodel))
    # # 文件夹下所有图片进行识别
    # for filename in os.listdir(r'data/demo/'):
    #     im_names = [filename]
    #     for im_name in im_names:
    #         print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~')
    #         print('Demo for data/demo/{}'.format(im_name))
    #         demo(sess, net, im_name)
    #
    #     plt.show()
    # 单一图片进行识别
    filename = '0001.jpg'
    im_names = [filename]
    for im_name in im_names:
        print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~')
        print('Demo for data/demo/{}'.format(im_name))
        demo(sess, net, im_name)
    plt.show()

效果如下:

大数据毕设分享 基于opencv的银行卡识别,python,毕业设计,毕设,大数据

大数据毕设分享 基于opencv的银行卡识别,python,毕业设计,毕设,大数据
大数据毕设分享 基于opencv的银行卡识别,python,毕业设计,毕设,大数据

4 字符分割

将切分出来的图片进行保存,然后就是将其进行切分:

主程序的代码和上面第一步的步骤原理是相同的,不同的就是训练集的不同设置

效果图如下:

大数据毕设分享 基于opencv的银行卡识别,python,毕业设计,毕设,大数据

5 银行卡数字识别

仅部分代码:

# author:丹成学长 Q746976041
import os
import tensorflow as tf
from PIL import Image
from nets2 import nets_factory
import numpy as np
import matplotlib.pyplot as plt
# 不同字符数量
CHAR_SET_LEN = 10
# 图片高度
IMAGE_HEIGHT = 60
# 图片宽度
IMAGE_WIDTH = 160
# 批次
BATCH_SIZE = 1
# tfrecord文件存放路径
TFRECORD_FILE = r"C:\workspace\Python\Bank_Card_OCR\demo\test_result\tfrecords/1.tfrecords"

# placeholder
x = tf.placeholder(tf.float32, [None, 224, 224])

os.environ["CUDA_VISIBLE_DEVICES"] = '0'   #指定第一块GPU可用
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.5  # 程序最多只能占用指定gpu50%的显存
config.gpu_options.allow_growth = True      #程序按需申请内存
sess = tf.Session(config = config)

# 从tfrecord读出数据
def read_and_decode(filename):
    # 根据文件名生成一个队列
    filename_queue = tf.train.string_input_producer([filename])
    reader = tf.TFRecordReader()
    # 返回文件名和文件
    _, serialized_example = reader.read(filename_queue)
    features = tf.parse_single_example(serialized_example,
                                       features={
                                           'image' : tf.FixedLenFeature([], tf.string),
                                           'label0': tf.FixedLenFeature([], tf.int64),

                                       })
    # 获取图片数据
    image = tf.decode_raw(features['image'], tf.uint8)
    # 没有经过预处理的灰度图
    image_raw = tf.reshape(image, [224, 224])
    # tf.train.shuffle_batch必须确定shape
    image = tf.reshape(image, [224, 224])
    # 图片预处理
    image = tf.cast(image, tf.float32) / 255.0
    image = tf.subtract(image, 0.5)
    image = tf.multiply(image, 2.0)
    # 获取label
    label0 = tf.cast(features['label0'], tf.int32)


    return image, image_raw, label0


# 获取图片数据和标签
image, image_raw, label0 = read_and_decode(TFRECORD_FILE)
# 使用shuffle_batch可以随机打乱
image_batch, image_raw_batch, label_batch0 = tf.train.shuffle_batch(
    [image, image_raw, label0], batch_size=BATCH_SIZE,
    capacity=50000, min_after_dequeue=10000, num_threads=1)


# 定义网络结构
train_network_fn = nets_factory.get_network_fn(
    'alexnet_v2',
    num_classes=CHAR_SET_LEN * 1,
    weight_decay=0.0005,
    is_training=False)

with tf.Session() as sess:
    # inputs: a tensor of size [batch_size, height, width, channels]
    X = tf.reshape(x, [BATCH_SIZE, 224, 224, 1])
    # 数据输入网络得到输出值
    logits, end_points = train_network_fn(X)
    # 预测值
    logits0 = tf.slice(logits, [0, 0], [-1, 10])


    predict0 = tf.argmax(logits0, 1)


    # 初始化
    sess.run(tf.global_variables_initializer())
    # 载入训练好的模型
    saver = tf.train.Saver()
    saver.restore(sess, '../Cmodels/model/crack_captcha1.model-6000')
    # saver.restore(sess, '../1/crack_captcha1.model-2500')

    # 创建一个协调器,管理线程
    coord = tf.train.Coordinator()
    # 启动QueueRunner, 此时文件名队列已经进队
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)

    for i in range(6):
        # 获取一个批次的数据和标签
        b_image, b_image_raw, b_label0 = sess.run([image_batch,image_raw_batch,label_batch0])
        # 显示图片
        img = Image.fromarray(b_image_raw[0], 'L')
        plt.imshow(img)
        plt.axis('off')
        plt.show()
        # 打印标签
        print('label:', b_label0)
        # 预测
        label0 = sess.run([predict0], feed_dict={x: b_image})
        # 打印预测值

        print('predict:', label0[0])
        # 通知其他线程关闭
    coord.request_stop()
    # 其他所有线程关闭之后,这一函数才能返回
    coord.join(threads)

最终实现效果:

大数据毕设分享 基于opencv的银行卡识别,python,毕业设计,毕设,大数据

简化流程

模板预处理

大数据毕设分享 基于opencv的银行卡识别,python,毕业设计,毕设,大数据

轮廓检测

大数据毕设分享 基于opencv的银行卡识别,python,毕业设计,毕设,大数据

大数据毕设分享 基于opencv的银行卡识别,python,毕业设计,毕设,大数据

大数据毕设分享 基于opencv的银行卡识别,python,毕业设计,毕设,大数据

大数据毕设分享 基于opencv的银行卡识别,python,毕业设计,毕设,大数据

最后

项目运行效果:

毕业设计 机器视觉opencv银行卡识别系统

项目获取:

https://gitee.com/sinonfin/algorithm-sharing

到了这里,关于大数据毕设分享 基于opencv的银行卡识别的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 毕业设计 基于opencv的银行卡识别

    🔥 今天学长向大家分享一个毕业设计项目 🚩 毕业设计 基于opencv的银行卡识别 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:4分 项目运行效果: 毕业设计 机器视觉opencv银行卡识别系统 项目获取: https://gitee.com/assistant-a/project-sharing 银

    2024年02月20日
    浏览(36)
  • 基于python+pyqt实现opencv银行卡身份证等识别

        识别结果 查看处理过程 历史记录 无法粘贴视频........ 视频和代码都已上传百度网盘,放在主页置顶文章

    2024年02月11日
    浏览(35)
  • 基于opencv+tensorflow+神经网络的智能银行卡卡号识别系统——深度学习算法应用(含python、模型源码)+数据集(一)

    本项目基于从网络获取的多种银行卡数据集,采用OpenCV库的函数进行图像处理,并通过神经网络进行模型训练。最终实现对常规银行卡号的智能识别和输出。 首先,通过网络获取了多样化的银行卡数据集,其中包含各种类型和设计的银行卡图像。这些图像数据将作为训练集和

    2024年02月04日
    浏览(56)
  • openCV实践项目:银行卡卡号识别

    本文用于对之前openCV知识点学习的复习及实践。要求达到以下效果: 本项目本质上就是进行模板匹配。 注: 为多用到所学知识,为了加深理解多加了些步骤 ,实际上本项目可以很简单就能完成。 模板: 转换成灰度图,二值化处理,用于轮廓检测。  我们将模板中的十个数

    2023年04月15日
    浏览(41)
  • 计算机视觉项目-银行卡卡号自动识别

    😊😊😊 欢迎来到本博客 😊😊😊 本次博客内容将继续讲解关于OpenCV的相关知识,利用项目讲解继续巩固自己得基础知识。 🎉 作者简介 : ⭐️⭐️⭐️ 目前计算机研究生在读。主要研究方向是人工智能和群智能算法方向。目前熟悉python网页爬虫、机器学习、计算机视觉

    2023年04月13日
    浏览(43)
  • 【合合TextIn】OCR身份证 / 银行卡识别功能适配鸿蒙系统

    目录 一、 鸿蒙系统与信创国产化的背景 二、两款产品的兼容性升级详情 三、身份证产品介绍 四、银行卡识别产品 五、承诺与展望 一、 鸿蒙系统与信创国产化的背景 自鸿蒙系统推出以来,其不仅成为了华为在软件领域的重要里程碑,更是国产操作系统的一面旗帜,也是国

    2024年04月10日
    浏览(52)
  • 微信小程序OCR插件,实现身份证、行驶证、银行卡、营业执照和驾驶证等识别

    随着科技的不断发展,图片识别技术已经成为了当下移动互联网中的热点话题。而基于微信小程序和 OCR 插件的图文识别方案,更是成为了越来越多小程序开发者关注和研究的问题。本文中,我将为大家介绍微信小程序 OCR 插件,帮助大家实现身份证、行驶证、银行卡、营业执

    2024年02月08日
    浏览(73)
  • 高效获取银行卡发卡行所在地信息——利用银行卡归属地查询接口

        摘要: 银行卡归属地查询接口是一种高效的方式,通过银行卡号查询银行名称、卡种、卡品牌以及发卡省份和城市等信息。本文将详细介绍如何使用该接口,并附带代码说明。同时,也介绍了接口的特点和适用范围,让读者能够充分了解和运用该接口,方便快捷地获取银

    2024年03月13日
    浏览(64)
  • 银行卡二要素验证API接口:支持银行名称模糊查询

    随着金融科技的发展,越来越多的人选择在线银行或移动银行上进行日常交易。在进行这些交易之前,通常需要进行身份验证以确保账户的安全性。其中,银行卡二要素验证是一种常见的身份验证方式。本文将为大家介绍如何使用银行卡二要素验证API接口,具体实现方法如下

    2024年02月09日
    浏览(42)
  • 工商银行卡安全码怎么看

    工商银行的安全码,作为一项至关重要的安全措施,旨在保护用户的银行账户和交易安全。为了查看工商银行的安全码用户需要按照以下步骤操作: 首先,用户需要使用电脑或手机访问工商银行的网上银行平台。在平台首页,用户需要输入自己的银行账号和密码进行登录。如

    2024年04月27日
    浏览(36)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包