OpenCV开发笔记(七十七):相机标定(二):通过棋盘标定计算相机内参矩阵矫正畸变摄像头图像

这篇具有很好参考价值的文章主要介绍了OpenCV开发笔记(七十七):相机标定(二):通过棋盘标定计算相机内参矩阵矫正畸变摄像头图像。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

若该文为原创文章,转载请注明原文出处
本文章博客地址:https://hpzwl.blog.csdn.net/article/details/136616551
各位读者,知识无穷而人力有穷,要么改需求,要么找专业人士,要么自己研究
红胖子(红模仿)的博文大全:开发技术集合(包含Qt实用技术、树莓派、三维、OpenCV、OpenGL、ffmpeg、OSG、单片机、软硬结合等等)持续更新中…(点击传送门)

OpenCV开发专栏(点击传送门)

上一篇:《OpenCV开发笔记(七十六):相机标定(一):识别棋盘并绘制角点》
下一篇:持续补充中…


前言

  通过相机图片可以识别出棋盘角点了,这时候我们需要通过角点去计算相机内参矩阵,通过上篇得知畸变的原理,所以我们尽可能要全方位都能获取标定图片,全方位意思是提供的多张图综合起来基本覆盖了相机所有的像素,同时还要注意远近和斜着
  本篇通过一张图片来识别计算得到相机内参矩阵,并矫正相机畸形。


补充

  做项目一定要多张且基本覆盖相机所有区域,要保证每一张截取的图片也要被识别,可以做成个软件,识别出棋盘都在一个预先指定的区域内则截图,然后下一个区域,实现半自动半人工化标定。


Demo

  OpenCV开发笔记(七十七):相机标定(二):通过棋盘标定计算相机内参矩阵矫正畸变摄像头图像,Qt开发,OpenCV图像处理2,opencv,畸变矫正,棋盘矫正,鱼眼摄像头矫正,内参矩阵畸变矫正

  这里只用了一张图校准,所以可能内参矩阵经度不那么高:
   OpenCV开发笔记(七十七):相机标定(二):通过棋盘标定计算相机内参矩阵矫正畸变摄像头图像,Qt开发,OpenCV图像处理2,opencv,畸变矫正,棋盘矫正,鱼眼摄像头矫正,内参矩阵畸变矫正


一张图校准的实例

   注意:这里demo只使用了可识别的一张图作为计算,可能没覆盖的区域则出现不可预期的图像问题。

步骤一:世界坐标系初始化

   这里是直接填充行列的坐标,第三个是z坐标直接设置为0,为视口处:

// 步骤八:角点对应的三维坐标(一张图一组)
std::vector<std::vector<cv::Point3f>> vectorObjectPoint;
std::vector<cv::Point3f> objectPoints;  // 三维世界坐标系
for(int i = 0; i < chessboardRowCornerCount; i++)
{
    for(int j = 0; j < chessboardColCornerCount; j++)
    {
        objectPoints.push_back(cv::Point3f(j, i, 0));
    }
}
vectorObjectPoint.push_back(objectPoints);

步骤二:识别的角点放入列表

   多张图放入多次,这里只有一张图:

// 步骤九:图像识别出来的角点(一张图一组)
std::vector<std::vector<cv::Point2f>> vectorImagePoint;
vectorImagePoint.push_back(vectorPoint2fCorners);

步骤三:计算内参和畸变系数

   输出的参数有点多,输入的参数却不多:

// 步骤十:计算内参和畸变系数
cv::Mat cameraMatrix;                   // 相机矩阵(接收输出)
cv::Mat distCoeffs;                     // 畸变系数(接收输出)
cv::Mat Rotate;                         // 旋转量(接收输出)
cv::Mat Translate;                      // 偏移量(接收输出)
cv::calibrateCamera(vectorObjectPoint,
                  vectorImagePoint,
                  grayMat.size(),
                  cameraMatrix,
                  distCoeffs,
                  Rotate,
                  Translate);
std::cout << "cameraMatrix:" << std::endl;
std::cout << cameraMatrix << std::endl;

std::cout << "distCoeffs:" << std::endl;
std::cout << distCoeffs << std::endl;

std::cout << "Rotate:" << std::endl;
std::cout << Rotate << std::endl;

std::cout << "Translate:" << std::endl;
std::cout << Translate << std::endl;

步骤四:畸变函数校准

   这里校准相对容易,所以难点在于标定校准,做项目肯定要自己写一个标定软件了,每次这么手动查看校准肯定不行的。

// 步骤十一:畸变图像校准
cv::Mat dstMat;
cv::undistort(srcMat, dstMat, cameraMatrix, distCoeffs);
cv::imshow("6", dstMat);

函数原型

calibrateCamera:相机标定求解函数

   OpenCV中的一个函数,用于相机标定。相机标定是估计相机内参(如焦距、主点坐标等)和畸变系数的过程,这些参数对于后续的图像处理任务(如三维重建、目标跟踪等)至关重要。

double calibrateCamera(InputArrayOfArrays objectPoints,  
                       InputArrayOfArrays imagePoints,  
                       Size imageSize,  
                       OutputArray cameraMatrix,  
                       OutputArray distCoeffs,  
                       OutputArray rvecs,  
                       OutputArray tvecs,  
                       int flags=0,  
                       TermCriteria criteria=TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 1e-6));

   参数说明:

  • objectPoints:世界坐标系中的三维点。通常,这些点是通过在标定板上定义的一系列点来获取的,这些点的坐标是已知的。对于每个图像,它应该是一个 Nx3 的数组(或数组列表),其中 N 是点的数量,而 3 表示每个点的 (X, Y, Z) 坐标。
  • imagePoints:图像坐标系中的二维点,即对应于 objectPoints 中的三维点在图像中的投影。对于每个图像,它应该是一个 Nx2 的数组(或数组列表),其中 N 是点的数量,而 2 表示每个点的 (x, y) 坐标。
  • imageSize:图像的大小,表示为 Size 类型的对象,包含图像的宽度和高度。
  • cameraMatrix:输出参数,存储 3x3 的相机内参矩阵。
  • distCoeffs:输出参数,存储畸变系数。通常有 5 个系数(k1, k2, p1, p2, k3)对于径向和切向畸变,或 8 个系数(k1, k2, k3, k4, k5, k6, p1, p2)对于鱼眼相机模型。
  • rvecs:输出参数,对于每个图像,存储旋转向量的数组。
  • tvecs:输出参数,对于每个图像,存储平移向量的数组。
  • flags:不同标志的组合,用于指定标定过程中使用的算法。
    CV_CALIB_USE_INTRINSIC_GUESS:使用该参数时,将包含有效的fx,fy,cx,cy的估计值的内参矩阵cameraMatrix,作为初始值输入,然后函数对其做进一步优化。如果不使用这个参数,用图像的中心点初始化光轴点坐标(cx, cy),使用最小二乘估算出fx,fy(这种求法好像和张正友的论文不一样,不知道为何要这样处理)。注意,如果已知内部参数(内参矩阵和畸变系数),就不需要使用这个函数来估计外参,可以使用solvepnp()函数计算外参数矩阵。
    CV_CALIB_FIX_PRINCIPAL_POINT:在进行优化时会固定光轴点,光轴点将保持为图像的中心点。当CV_CALIB_USE_INTRINSIC_GUESS参数被设置,保持为输入的值。
    CV_CALIB_FIX_ASPECT_RATIO:固定fx/fy的比值,只将fy作为可变量,进行优化计算。当 CV_CALIB_USE_INTRINSIC_GUESS没有被设置,fx和fy的实际输入值将会被忽略,只有fx/fy的比值被计算和使用。
    CV_CALIB_ZERO_TANGENT_DIST:切向畸变系数(P1,P2)被设置为零并保持为零。
    CV_CALIB_FIX_K1,…,CV_CALIB_FIX_K6:对应的径向畸变系数在优化中保持不变。如果设置了CV_CALIB_USE_INTRINSIC_GUESS参数,就从提供的畸变系数矩阵中得到。否则,设置为0。
    CV_CALIB_RATIONAL_MODEL(理想模型):启用畸变k4,k5,k6三个畸变参数。使标定函数使用有理模型,返回8个系数。如果没有设置,则只计算其它5个畸变参数。
    CALIB_THIN_PRISM_MODEL (薄棱镜畸变模型):启用畸变系数S1、S2、S3和S4。使标定函数使用薄棱柱模型并返回12个系数。如果不设置标志,则函数计算并返回只有5个失真系数。
    CALIB_FIX_S1_S2_S3_S4 :优化过程中不改变薄棱镜畸变系数S1、S2、S3、S4。如果cv_calib_use_intrinsic_guess设置,使用提供的畸变系数矩阵中的值。否则,设置为0。
    CALIB_TILTED_MODEL (倾斜模型):启用畸变系数tauX and tauY。标定函数使用倾斜传感器模型并返回14个系数。如果不设置标志,则函数计算并返回只有5个失真系数。
    CALIB_FIX_TAUX_TAUY :在优化过程中,倾斜传感器模型的系数不被改变。如果cv_calib_use_intrinsic_guess设置,从提供的畸变系数矩阵中得到。否则,设置为0。
  • criteria:迭代优化的终止条件。通常包含最大迭代次数和收敛的精度。

   这个函数返回一个双精度浮点数,表示重投影误差的估计值,即实际图像点与通过相机参数和畸变系数计算出的图像点之间的平均误差。
   为了获得准确的相机标定结果,通常需要多个视图(即多张不同角度和姿态拍摄的标定板图像),**并确保标定板在不同图像中占据足够的视场。**此外,图像应该清晰,且标定板上的特征点(如棋盘格的角点)应准确检测。

initUndistortRectifyMap:计算畸变参数

   OpenCV中用于初始化用于图像去畸变和校正的映射表的函数。这个函数的目的是生成两个映射,一个用于x坐标,另一个用于y坐标,它们可以被用于 remap函数来校正图像的畸变。

void initUndistortRectifyMap(InputArray cameraMatrix, 
                         InputArray distCoeffs, 
                         InputArray R, 
                         InputArray newCameraMatrix, 
                         Size size, 
                         int m1type, 
                         OutputArray map1, 
                         OutputArray map2)

   参数说明

  • cameraMatrix:相机的内参矩阵,一个3x3的浮点数矩阵。
  • distCoeffs:畸变系数,一个1x5或1x8的向量,包含径向和切向畸变系数。
  • R:可选的旋转矩阵,一个3x3的浮点数矩阵,表示从原相机坐标系到新的相机坐标系的旋转。如果这个参数是空的,那么newCameraMatrix必须是cameraMatrix。
  • newCameraMatrix:新的相机内参矩阵,一个3x3的浮点数矩阵。这个矩阵可以是原始相机矩阵,或者经过getOptimalNewCameraMatrix调整后的矩阵,以考虑图像的有效视场。
  • size:输出映射的尺寸,表示为Size类型的对象,包含图像的宽度和高度。
  • m1type:输出映射的类型,可以是CV_32FC1或CV_16SC2。
  • map1:输出的第一个映射,用于x坐标,可以被传递给remap函数。
  • map2:输出的第二个映射,用于y坐标,可以被传递给remap函数。

   这两个映射map1和map2可以被传递给remap函数,以对图像进行去畸变和校正。
   如果有一个畸变的图像distortedImage和想要得到校正后的图像undistortedImage,可以这样使用这两个函数:

Mat map1,map2;
initUndistortRectifyMap(cameraMatrix, distCoeffs, R, newCameraMatrix, size, CV_32FC1, map1, map2);  
remap(distortedImage, undistortedImage, map1, map2, INTER_LINEAR);

   在这个例子中,INTER_LINEAR是插值方法的类型,用于remap函数。其他的插值方法,如INTER_NEAREST、INTER_CUBIC等也可以被使用,具体取决于应用需求。


Demo源码

void OpenCVManager::testCorrectingChessboard()
{
#define TestCorrectingChessboardUseCamera 0
#if !TestCorrectingChessboardUseCamera
    // 使用图片
//    std::string srcFilePath = "D:/qtProject/openCVDemo/openCVDemo/modules/openCVManager/images/chessboard.png";
//    std::string srcFilePath = "D:/qtProject/openCVDemo/openCVDemo/modules/openCVManager/images/24.jpg";
//    std::string srcFilePath = "D:/qtProject/openCVDemo/openCVDemo/modules/openCVManager/images/27.png";
//    std::string srcFilePath = "D:/qtProject/openCVDemo/openCVDemo/modules/openCVManager/images/28.png";
    std::string srcFilePath = "D:/qtProject/openCVDemo/openCVDemo/modules/openCVManager/images/28.jpg";
    cv::Mat srcMat = cv::imread(srcFilePath);
#else
    // 使用摄像头
    cv::VideoCapture capture;
    // 插入USB摄像头默认为0
    if(!capture.open(0))
    {
        qDebug() << __FILE__ << __LINE__  << "Failed to open camera: 0";
    }else{
        qDebug() << __FILE__ << __LINE__  << "Succeed to open camera: 0";
    }
    while(true)
    {
        cv::Mat srcMat;
        capture >> srcMat;
#endif
    int chessboardColCornerCount = 6;
    int chessboardRowCornerCount = 9;
//    int chessboardColCornerCount = 7;
//    int chessboardRowCornerCount = 7;
    // 步骤一:读取文件
//    cv::imshow("1", srcMat);
//    cv::waitKey(0);
//     步骤二:缩放,太大了缩放下(可省略)
    cv::resize(srcMat, srcMat, cv::Size(srcMat.cols / 2, srcMat.rows / 2));
    cv::Mat srcMat2 = srcMat.clone();
    cv::Mat srcMat3 = srcMat.clone();
    cv::imshow("2", srcMat);
//    cv::waitKey(0);
    // 步骤三:灰度化
    cv::Mat grayMat;
    cv::cvtColor(srcMat, grayMat, cv::COLOR_BGR2GRAY);
    cv::imshow("3", grayMat);
//    cv::waitKey(0);
    // 步骤四:检测角点
    std::vector<cv::Point2f> vectorPoint2fCorners;
    bool patternWasFound = false;
    patternWasFound = cv::findChessboardCorners(grayMat,
                                                cv::Size(chessboardColCornerCount, chessboardRowCornerCount),
                                                vectorPoint2fCorners,
                                                cv::CALIB_CB_ADAPTIVE_THRESH | cv::CALIB_CB_FAST_CHECK | cv::CALIB_CB_NORMALIZE_IMAGE);
    /*
    enum { CALIB_CB_ADAPTIVE_THRESH = 1,    // 使用自适应阈值将图像转化成二值图像
           CALIB_CB_NORMALIZE_IMAGE = 2,    // 归一化图像灰度系数(用直方图均衡化或者自适应阈值)
           CALIB_CB_FILTER_QUADS    = 4,    // 在轮廓提取阶段,使用附加条件排除错误的假设
           CALIB_CB_FAST_CHECK      = 8     // 快速检测
         };
    */
    cvui::printf(srcMat, 0, 0, 1.0, 0xFF0000, "found = %s", patternWasFound ? "true" : "false");
    cvui::printf(srcMat, 0, 24, 1.0, 0xFF0000, "count = %d", vectorPoint2fCorners.size());
    qDebug() << __FILE__ << __LINE__ << vectorPoint2fCorners.size();
    // 步骤五:绘制棋盘点
    cv::drawChessboardCorners(srcMat2,
                              cv::Size(chessboardColCornerCount, chessboardRowCornerCount),
                              vectorPoint2fCorners,
                              patternWasFound);
#if TestCorrectingChessboardUseCamera
    cv::imshow("0", srcMat);
    cv::imshow("4", srcMat2);
    if(!patternWasFound)
    {
        cv::imshow("5", srcMat3);
        cv::waitKey(1);
        continue;
    }
#endif
    // 步骤六:进一步提取亚像素角点
    cv::TermCriteria criteria(CV_TERMCRIT_EPS | CV_TERMCRIT_ITER,   // 类型
                              30,                                   // 参数二: 最大次数
                              0.001);                               // 参数三:迭代终止阈值
    /*
    #define CV_TERMCRIT_ITER    1                   // 终止条件为: 达到最大迭代次数终止
    #define CV_TERMCRIT_NUMBER  CV_TERMCRIT_ITER    //
    #define CV_TERMCRIT_EPS     2                   // 终止条件为: 迭代到阈值终止
    */
    qDebug() << __FILE__ << __LINE__ << vectorPoint2fCorners.size();
    cv::cornerSubPix(grayMat,
                     vectorPoint2fCorners,
                     cv::Size(5, 5),
                     cv::Size(-1, -1),
                     criteria);
    // 步骤七:绘制棋盘点
    cv::drawChessboardCorners(srcMat3,
                              cv::Size(chessboardColCornerCount, chessboardRowCornerCount),
                              vectorPoint2fCorners,
                              patternWasFound);
    cv::imshow("5", srcMat3);
//    cv::waitKey(0);


    // 步骤八:角点对应的三维坐标(一张图一组)
    std::vector<std::vector<cv::Point3f>> vectorObjectPoint;
    std::vector<cv::Point3f> objectPoints;  // 三维世界坐标系
    for(int i = 0; i < chessboardRowCornerCount; i++)
    {
        for(int j = 0; j < chessboardColCornerCount; j++)
        {
            objectPoints.push_back(cv::Point3f(j, i, 0));
        }
    }
    vectorObjectPoint.push_back(objectPoints);

    // 步骤九:图像识别出来的角点(一张图一组)
    std::vector<std::vector<cv::Point2f>> vectorImagePoint;
    vectorImagePoint.push_back(vectorPoint2fCorners);

    // 步骤十:计算内参和畸变系数

    cv::Mat cameraMatrix;                   // 相机矩阵(接收输出)
    cv::Mat distCoeffs;                     // 畸变系数(接收输出)
    cv::Mat Rotate;                         // 旋转量(接收输出)
    cv::Mat Translate;                      // 偏移量(接收输出)
    cv::calibrateCamera(vectorObjectPoint,
                        vectorImagePoint,
                        grayMat.size(),
                        cameraMatrix,
                        distCoeffs,
                        Rotate,
                        Translate);
    std::cout << "cameraMatrix:" << std::endl;
    std::cout << cameraMatrix << std::endl;

    std::cout << "distCoeffs:" << std::endl;
    std::cout << distCoeffs << std::endl;

    std::cout << "Rotate:" << std::endl;
    std::cout << Rotate << std::endl;

    std::cout << "Translate:" << std::endl;
    std::cout << Translate << std::endl;

    // 步骤十一:畸变图像校准
    cv::Mat dstMat;
    cv::undistort(srcMat, dstMat, cameraMatrix, distCoeffs);
    cv::imshow("6", dstMat);

#if TestCorrectingChessboardUseCamera
    cv::waitKey(1);
    }
//    cv::imshow(_windowTitle.toStdString(), dstMat);
#else
    cv::waitKey(0);
#endif
}

对应工程模板v1.68.0

  OpenCV开发笔记(七十七):相机标定(二):通过棋盘标定计算相机内参矩阵矫正畸变摄像头图像,Qt开发,OpenCV图像处理2,opencv,畸变矫正,棋盘矫正,鱼眼摄像头矫正,内参矩阵畸变矫正


入坑

入坑一:无法识别图像

问题

  无法识别。
  OpenCV开发笔记(七十七):相机标定(二):通过棋盘标定计算相机内参矩阵矫正畸变摄像头图像,Qt开发,OpenCV图像处理2,opencv,畸变矫正,棋盘矫正,鱼眼摄像头矫正,内参矩阵畸变矫正

原理

  要全部棋盘视野内,且可以识别,这个确实识别不了。

解决

  换图重新来过(这是笔者随便找的图)。

入坑二:校准之后四角不准

问题

  四角明显不对。
  OpenCV开发笔记(七十七):相机标定(二):通过棋盘标定计算相机内参矩阵矫正畸变摄像头图像,Qt开发,OpenCV图像处理2,opencv,畸变矫正,棋盘矫正,鱼眼摄像头矫正,内参矩阵畸变矫正

原理

  这里需要多张图在能识别的情况下覆盖所有区域。

解决

  先这样,下次实际标定的时候再多张图看是否还存在该问题。


上一篇:《OpenCV开发笔记(七十六):相机标定(一):识别棋盘并绘制角点》
下一篇:持续补充中…


若该文为原创文章,转载请注明原文出处
本文章博客地址:https://hpzwl.blog.csdn.net/article/details/136616551文章来源地址https://www.toymoban.com/news/detail-839238.html

到了这里,关于OpenCV开发笔记(七十七):相机标定(二):通过棋盘标定计算相机内参矩阵矫正畸变摄像头图像的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 相机棋盘格标定板制作A4打印(无需代码)

    自己在网上搜了半天python脚本代码生成棋盘格标定板,虽然生成了,但是精度上也有些误差,霍霍了一上午,钻牛角尖了属于是。后面得知有一个免费生成标定板的网站,我的反应:?????都快2024年了,不会还有人用代码生成标定板然后去打印出来吧? 网址如下:Came

    2024年01月19日
    浏览(26)
  • c#-OpenCvSharp-棋盘格相机标定与图像矫正(源码demo)

    目录 前言 核心函数: Cv2.FindChessboardCorners:检测角点 Cv2.DrawChessboardCorners:绘制角点 Cv2.CalibrateCamera:相机标定  结果: demo: 前言 相机标定是指确定相机内参和畸变参数的过程,而图像矫正则是对图像进行去畸变操作,以提高图像质量和准确性。 相机标定是的目标是确定相

    2024年04月11日
    浏览(56)
  • 棋盘格测距-单目相机(OpenCV/C++)

    1’ 通过cv::findChessboardCorners寻找棋盘格角点 2‘ 用cv::solvePnP计算旋转向量rvec和平移向量tvec 3’ 通过公式计算相机到棋盘格的距离   已完成单目相机标定的情况下: (可以参考  虽然是我很久之前写的python的,但实现是没啥问题) 需要以下内容: 1、已知相机的内参矩阵 c

    2024年02月08日
    浏览(28)
  • Android OpenCV(七十七):官方指南方式编译 OpenCV Android SDK.md

    众所周知😳, OpenCV 4.9.0 罕见的在 Android 平台上做出调整,具体更新内容请移步难得一见的 Android OpenCV ChangeLog。然而,近期笔者在查阅 OpenCV Github Wiki 时,又发现了新东西🤡,一篇名为 \\\"Custom OpenCV Android SDK and AAR package build\\\"的 Wiki。以前我们编译 SDK 采用的是CMake方式,具体可

    2024年01月21日
    浏览(28)
  • 相机标定-机器视觉基础(理论推导、Halcon和OpenCV相机标定)

             相机标定是获得目标工件精准坐标信息的基础。首先,必须进行相机内参标定,构建一个模型消除图像畸变;其次,需要对相机和机器人的映射关系进行手眼标定,构建一个模型将图像坐标系上的点映射到世界坐标系。主要分为背景知识、相机内外参模型推导、

    2023年04月21日
    浏览(32)
  • 第七十七篇:车辆安全-车载软件C++语言开发指南(AUTOSAR C++)

    C++是面向对象的编程,比C语言更加复杂,抽象程度高,但C++在一些图像处理、系统、控件的编程方面,实用性更强,具有自己的编程优势。在车载嵌入式系统的开发中,C和C++都具有重要的作用。C++语言所使用的面向对象的编程技术如封装、继承和多态性极大的提高了在大规

    2024年02月04日
    浏览(46)
  • 【相机标定】opencv python 标定相机内参时不计算 k3 畸变参数

    畸变参数 k3 通常用于描述径向畸变的更高阶效应,即在需要高精度的应用中可以用到,一般的应用中 k1, k2 足矣。 常见的应用中, orbslam3 中是否传入 k3 是可选的,而 kalibr 标定中则只需要传入 k1, k2 。但计算 k3 时的 k1, k2 不等于不计算 k3 时的 k1, k2 ,因此需要学会两种场景下

    2024年02月09日
    浏览(23)
  • 用OpenCV进行相机标定(张正友标定,有代码)

    理论部分可以参考其他博客或者视觉slam十四讲 相机标定主要是为了获得相机的内参矩阵K和畸变参数 内参矩阵K 畸变系数:径向畸变(k1,k2,k3), 切向畸变(p1,p2) 径向畸变公式 切向畸变公式 张正友标定方法能够提供一个比较好的初始解,用于后序的最优化. 这里用棋盘格进行标定,如

    2024年02月07日
    浏览(29)
  • OpenCV实战(23)——相机标定

    我们已经了解了相机如何通过在 2D 传感器平面上投射光线来拍摄 3D 场景,生成的图像准确地表示了在捕获图像的瞬间从特定视点观察场景。然而,图像形成过程消除了与其所表示场景元素的深度有关的所有信息。为了恢复场景的 3D 结构和摄像机的 3D 姿态,我们需要对相机参

    2024年02月08日
    浏览(43)
  • OpenCV中的相机标定

          之前在https://blog.csdn.net/fengbingchun/article/details/130039337 中介绍了相机的内参和外参,这里通过OpenCV中的接口实现对内参和外参的求解。       估计相机参数的过程称为相机标定(camera calibration)。相机标定是使用已知的真实世界模式(例如棋盘)来估计相机镜头和传感器的外

    2023年04月19日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包