【海贼王的数据航海】时间复杂度 | 空间复杂度

这篇具有很好参考价值的文章主要介绍了【海贼王的数据航海】时间复杂度 | 空间复杂度。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

1 -> 算法效率

1.1 -> 如何衡量一个算法的好坏?

1.2 -> 算法的复杂度

2 -> 时间复杂度

2.1 -> 时间复杂度的概念

2.2 -> 大O的渐进表示法

2.3 -> 常见时间复杂度计算

3 -> 空间复杂度

4 -> 常见复杂度对比


【海贼王的数据航海】时间复杂度 | 空间复杂度,数据结构,c++,visualstudio,后端,开发语言,数据结构

1 -> 算法效率

1.1 -> 如何衡量一个算法的好坏?

对于以下斐波那契数列:

#define _CRT_SECURE_NO_WARNINGS

#include <iostream>
using namespace std;

long long fib(int N)
{
	if (N < 3)
		return 1;

	return fib(N - 1) + fib(N - 2);
}

int main()
{

	

	return 0;
}

用递归实现斐波那契数列,看上去代码十分简洁,但简洁一定就是好算法吗?如何衡量一个算法的好坏?

1.2 -> 算法的复杂度

算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源。因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。

时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。在计算机发展的早期,计算机存储容量很小。所以对于空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要特别关注一个算法的空间复杂度。

2 -> 时间复杂度

2.1 -> 时间复杂度的概念

定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上来讲,是不能算出来的,只有把程序放在机器上跑起来才能知道。但是我们需要每个算法都上机测试吗?固然可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方法。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。

即:找到某条语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。

#define _CRT_SECURE_NO_WARNINGS

#include <iostream>
using namespace std;

// 请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N)
{
	int count = 0;
	for (int i = 0; i < N; ++i)
		for (int j = 0; j < N; ++j)
			++count;

	for (int k = 0; k < 2 * N; ++k)
		++count;

	int M = 10;
	while (M--)
		++count;

	cout << count << endl;
}

int main()
{


	return 0;
}

Func1执行的基本操作数:

【海贼王的数据航海】时间复杂度 | 空间复杂度,数据结构,c++,visualstudio,后端,开发语言,数据结构

-> N = 10 F(N) = 130
-> N = 100 F(N) = 10210
-> N = 1000 F(N) = 1002010

实际我们在计算时间复杂度时,并不一定要计算精确的执行次数,只需要大概执行次数,所以我们使用大O的渐进表示法。

2.2 -> 大O的渐进表示法

大O符号(Big O notation):是用于描述函数渐进行为的数学符号。

推导大O阶方法:

  1. 在常数1取代运行时间中的所有加法常数;
  2. 在修改后的运行次数函数中,只保留最高阶项;
  3. 如果最高阶项存在且不为1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

使用大O的渐进表示法后,Func1的时间复杂度为:

-> N = 10 F(N) = 100

-> N = 100 F(N) = 10000
-> N = 1000 F(N) = 1000000

通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。 

另外有些算法的时间复杂度存在最好、平均和最坏情况:

  • 最好情况:任意输入规模的最小运行次数(下界)
  • 平均情况:任意输入规模的期望运行次数
  • 最坏情况:任意输入规模的最大运行次数(上界)

例如:在一个长度为N的数组中搜索一个数据x

  • 最好情况:1次找到
  • 平均情况:N / 2次找到
  • 最坏情况:N次找到

在实际中一般情况关注的是算法的最坏运行情况,所以数组中的搜索数据时间复杂度为:

2.3 -> 常见时间复杂度计算

实例1:

// 计算Func2的时间复杂度?
void Func2(int N)
{
	int count = 0;
	for (int k = 0; k < 2 * N; ++k)
		++count;

	int M = 10;
	while (M--)
		++count;

	cout << count << endl;
}

实例2:

// 计算Func3的时间复杂度?
void Func3(int N, int M)
{
	int count = 0;
	for (int k = 0; k < M; ++k)
		++count;

	for (int k = 0; k < N; ++k)
		++count;

	cout << count << endl;
}

实例3:

// 计算Func4的时间复杂度?
void Func4(int N)
{
	int count = 0;
	for (int k = 0; k < 100; ++k)
		++count;

	cout << count << endl;
}

实例4:

// 计算strchr的时间复杂度?
const char* strchr(const char* str, int character);

实例5:

// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{
	assert(a);
	for (size_t end = n; end > 0; --end)
	{
		int exchange = 0;
		for (size_t i = 1; i < end; ++i)
		{
			if (a[i - 1] > a[i])
			{
				Swap(&a[i - 1], &a[i]);
				exchange = 1;
			}
		}
		if (exchange == 0)
			break;
	}
}

实例6:

// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{
	assert(a);
	int begin = 0;
	int end = n - 1;

	// [begin, end]:begin和end是左闭右闭区间,因此有=号
	while (begin <= end)
	{
		int mid = begin + ((end - begin) >> 1);
		if (a[mid] < x)
			begin = mid + 1;
		else if (a[mid] > x)
			end = mid - 1;
		else
			return mid;
	}

	return -1;
}

实例7:

// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{
	if (0 == N)
		return 1;

	return Fac(N - 1) * N;
}

实例8:

// 计算斐波那契递归fib的时间复杂度?
long long fib(size_t N)
{
	if (N < 3)
		return 1;

	return fib(N - 1) + fib(N - 2);
}

答案及分析:

1. 实例1基本操作执行了2N+10次,通过推导大O阶方法知道,时间复杂度为 O(N)
2. 实例2基本操作执行了M+N次,有两个未知数M和N,时间复杂度为 O(N+M)
3. 实例3基本操作执行了10次,通过推导大O阶方法,时间复杂度为 O(1)
4. 实例4基本操作执行最好1次,最坏N次,时间复杂度一般看最坏,时间复杂度为 O(N)
5. 实例5基本操作执行最好N次,最坏执行了(N*(N+1)/2次,通过推导大O阶方法+时间复杂度一般看最坏,时间复杂度为 O(N^2)
6. 实例6基本操作执行最好1次,最坏O(logN)次,时间复杂度为 O(logN) ps:logN在算法分析中表示是底数为2,对数为N。有些地方会写成lgN。
7. 实例7通过计算分析发现基本操作递归了N次,时间复杂度为O(N)。
8. 实例8通过计算分析发现基本操作递归了2^N次,时间复杂度为O(2^N)。

3 -> 空间复杂度

空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度。

空间复杂度不是程序占用了多少byte的空间,因为意义不大,所以空间复杂度算的是变量的个数。空间复杂度计算规则基本与时间复杂度类似,也是使用大O渐进表示法。

注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时显式申请的额外空间来确定。

实例1:

// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{
	assert(a);
	for (size_t end = n; end > 0; --end)
	{
		int exchange = 0;
		for (size_t i = 1; i < end; ++i)
		{
			if (a[i - 1] > a[i])
			{
				Swap(&a[i - 1], &a[i]);
				exchange = 1;
			}
		}

		if (exchange == 0)
			break;
	}
}

实例2:

// 计算fib的空间复杂度?
// 返回斐波那契数列的前n项
long long* fib(size_t n)
{
	if (n == 0)
		return NULL;

	long long* arr = (long long*)malloc((n + 1) * sizeof(long long));
	arr[0] = 0;
	arr[1] = 1;
	for (int i = 2; i <= n; ++i)
		arr[i] = arr[i - 1] + arr[i - 2];

	return arr;
}

实例3:

// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{
	if (N == 0)
		return 1;

	return Fac(N - 1) * N;
}

答案及分析:

1. 实例1使用了常数个额外空间,所以空间复杂度为 O(1)
2. 实例2动态开辟了N个空间,空间复杂度为 O(N)
3. 实例3递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。空间复杂度为O(N)

4 -> 常见复杂度对比

一般算法的常见复杂度:

5201314 O(1) 常数阶
3n + 4 O(n) 线性阶
3n ^ 2 + 4n + 5 O(n ^ 2) 平方阶
3log(2)n + 4 O(logn) 对数阶
2n + 3nlog(2)n + 4 O(nlogn) nlogn阶
n ^ 3 + n ^ 2 + 3n + 4 O(n ^ 3) 立方阶
2 ^ n O(2 ^ n) 指数阶

【海贼王的数据航海】时间复杂度 | 空间复杂度,数据结构,c++,visualstudio,后端,开发语言,数据结构


感谢大佬们支持!!!

互三啦!!!文章来源地址https://www.toymoban.com/news/detail-839867.html

到了这里,关于【海贼王的数据航海】时间复杂度 | 空间复杂度的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【海贼王的数据航海】排序——直接选择排序|堆排序

    目录 1 - 选择排序 1.1 - 基本思想 1.2 - 直接选择排序 1.2.1 - 代码实现 1.3 - 堆排序 1.3.1 - 代码实现 每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完。 在元素集合arr[i] -- arr[n - 1]中选择关键码最大(或最小)的数据

    2024年03月19日
    浏览(23)
  • 【海贼王的数据航海】排序——概念|直接插入排序|希尔排序

    目录 1 - 排序的概念及其运用 1.1 - 排序的概念 1.2 - 常见的排序算法 2 - 插入排序 2.1 - 基本思想 2.2 - 直接插入排序 2.2.1 - 代码实现 2.3 - 希尔排序(缩小增量排序) 2.3.1 - 代码实现 排序 :所谓排序,就是使一串记录,按照其中的某个或某些的大小,递增或递减的排列起来的

    2024年03月25日
    浏览(29)
  • 【海贼王的数据航海:利用数据结构成为数据海洋的霸主】探究二叉树的奥秘

    目录 1 - 树的概念及结构 1.1 - 树的概念 1.2 - 树的相关概念 1.3 - 树的表示 1.4 - 树在实际中的运用(表示文件系统的目录树结构) 2 - 二叉树概念及结构 2.1 - 二叉树的概念 2.2 - 现实中的二叉树 2.3 - 特殊的二叉树 2.4 - 二叉树的性质 2.5 - 二叉树的存储结构 3 - 二叉树的顺序结构及实

    2024年03月12日
    浏览(50)
  • 大学生bootstrap框架网页作业成品 web前端大作业期末源码 航海王html+jquery+bootstrap响应式网页制作模板 学生海贼王动漫bootstrap框架网站作品

    HTML实例网页代码, 本实例适合于初学HTML的同学。该实例里面有设置了css的样式设置,有div的样式格局,这个实例比较全面,有助于同学的学习,本文将介绍如何通过从头开始设计个人网站并将其转换为代码的过程来实践设计。 ⚽精彩专栏推荐👇🏻👇🏻👇🏻 ❤ 【作者主页

    2024年02月11日
    浏览(51)
  • 数据结构(2)时间复杂度——渐进时间复杂度、渐进上界、渐进下界

    目录 2.1.概述 2.2.时间复杂度的计算 2.2.1.渐进复杂度 2.2.2.渐进上界 2.2.3.渐进下届 2.2.4.复杂度排序 2.2.5.举几个例子 算法的基本定义: 求解问题的一系列计算或者操作。 衡量算法性能的指标: 时间复杂性 空间复杂性 这两个指标里最有用的是时间复杂度,平时谈的算法复杂度

    2024年02月11日
    浏览(24)
  • 数据结构(时间复杂度,空间复杂度)

    算法的时间复杂度是一个数学函数,算法中的基本操作的执行次数,为算法的时间复杂度。 1.大O的表示法 2.推导大O表示法 1、用常数1取代运行时间中的所有加法常数。 2、在修改后的运行次数函数中,只保留最高阶项。 3、如果最高阶项存在且不是1,则去除与这个项目相乘的

    2024年02月07日
    浏览(32)
  • 数据结构 — 时间复杂度、空间复杂度

    数据结构_空间复杂度_时间复杂度讲解_常见复杂度对比 本文介绍数据结构中的时间复杂度和空间复杂度 ***文章末尾,博主进行了概要总结,可以直接看总结部分*** 博主博客链接:https://blog.csdn.net/m0_74014525 点点关注,后期持续更新系列文章 算法效率指的是算法在处理数据时

    2024年02月13日
    浏览(35)
  • 数据结构——时间复杂度和空间复杂度

    1.算法效率 2.时间复杂度 3.空间复杂度 4. 常见时间复杂度以及复杂度oj练习 1.算法效率 1.1 如何衡量一个算法的好坏 如何衡量一个算法的好坏呢?比如对于以下斐波那契数的计算 我们看到虽然用递归的方式实现斐波那契很简单,但是简单一定代表效率高吗? 我们接着往下看。

    2024年02月13日
    浏览(31)
  • 数据结构之时间复杂度-空间复杂度

    大家好,我是深鱼~ 目录 1.数据结构前言 1.1什么是数据结构 1.2什么是算法 1.3数据结构和算法的重要性 1.4如何学好数据结构和算法 2.算法的效率 3.时间复杂度 3.1时间复杂度的概念 3.2大O的渐进表示法 【实例1】:双重循环的时间复杂度:O(N) 【实例2】:双重循环的时间复杂度

    2024年02月14日
    浏览(29)
  • 数据结构——时间复杂度与空间复杂度

    目录 一.什么是空间复杂度与时间复杂度 1.1算法效率 1.2时间复杂度的概念 1.3空间复杂度的概念 二.如何计算常见算法的时间复杂度 2.1大O的渐近表示法  使用规则 三.如何计算常见算法的空间复杂度 3.1 大O渐近表示法 3.2 面试题——消失的数字  3.3 面试题——旋转数组 分为两

    2024年02月07日
    浏览(34)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包