FPGA——三速自适应以太网设计(1)基本模块

这篇具有很好参考价值的文章主要介绍了FPGA——三速自适应以太网设计(1)基本模块。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1. 协议解析

每层都嵌套在上层的数据字段
FPGA——三速自适应以太网设计(1)基本模块,FPGA——三速以太网协议讲解与实战,fpga开发,嵌入式,fpga,网络,学习
FPGA——三速自适应以太网设计(1)基本模块,FPGA——三速以太网协议讲解与实战,fpga开发,嵌入式,fpga,网络,学习

(1)MAC层

以太网帧长: 64B~1518B
FPGA——三速自适应以太网设计(1)基本模块,FPGA——三速以太网协议讲解与实战,fpga开发,嵌入式,fpga,网络,学习
FPGA——三速自适应以太网设计(1)基本模块,FPGA——三速以太网协议讲解与实战,fpga开发,嵌入式,fpga,网络,学习

(2)IP层 和 ARP层

IP层
FPGA——三速自适应以太网设计(1)基本模块,FPGA——三速以太网协议讲解与实战,fpga开发,嵌入式,fpga,网络,学习
FPGA——三速自适应以太网设计(1)基本模块,FPGA——三速以太网协议讲解与实战,fpga开发,嵌入式,fpga,网络,学习
ARP层
FPGA——三速自适应以太网设计(1)基本模块,FPGA——三速以太网协议讲解与实战,fpga开发,嵌入式,fpga,网络,学习
FPGA——三速自适应以太网设计(1)基本模块,FPGA——三速以太网协议讲解与实战,fpga开发,嵌入式,fpga,网络,学习

(3)UDP层 和 ICMP层

UDP层
FPGA——三速自适应以太网设计(1)基本模块,FPGA——三速以太网协议讲解与实战,fpga开发,嵌入式,fpga,网络,学习

ICMP层
FPGA——三速自适应以太网设计(1)基本模块,FPGA——三速以太网协议讲解与实战,fpga开发,嵌入式,fpga,网络,学习
FPGA——三速自适应以太网设计(1)基本模块,FPGA——三速以太网协议讲解与实战,fpga开发,嵌入式,fpga,网络,学习

2.1 MAC接收模块

module MAC_rx#(
    parameter       P_TARTGET_MAC   =   {8'h00,8'h00,8'h00,8'h00,8'h00,8'h00},
                    P_SOURCE_MAC    =   {8'h00,8'h00,8'h00,8'h00,8'h00,8'h00},
                    P_CRC_CHECK     =   1
)(
    input           i_clk               ,
    input           i_rst               ,
    /*--------info port--------*/   
    input  [47:0]   i_target_mac        ,
    input           i_target_mac_valid  ,
    input  [47:0]   i_source_mac        ,
    input           i_source_mac_valid  ,
    /*--------data port--------*/
    output [15:0]   o_post_type         ,
    output [7 :0]   o_post_data         ,
    output          o_post_last         ,
    output          o_post_valid        ,

    output [47:0]   o_rec_src_mac       ,
    output          o_rec_src_valid     ,
    output          o_crc_error         ,   
    output          o_crc_valid         ,    
    /*--------GMII port--------*/
    input  [7 :0]   i_GMII_data         ,
    input           i_GMII_valid        
);
/***************function**************/

/***************parameter*************/

/***************port******************/             

/***************mechine***************/

/***************reg*******************/
reg                 ro_post_last          ;
reg                 ro_post_valid         ;
reg  [47:0]         ro_rec_src_mac      ;
reg                 ro_rec_src_valid    ;
reg                 ro_crc_error        ;
reg  [7 :0]         ri_GMII_data        ;
reg                 ri_GMII_valid       ;
reg  [7 :0]         ri_GMII_data_1d     ;
reg                 ri_GMII_valid_1d    ;
reg  [7 :0]         ri_GMII_data_2d     ;
reg                 ri_GMII_valid_2d    ;
reg  [7 :0]         ri_GMII_data_3d     ;
reg                 ri_GMII_valid_3d    ;
reg  [7 :0]         ri_GMII_data_4d     ;
reg                 ri_GMII_valid_4d    ;
reg  [7 :0]         ri_GMII_data_5d     ;
reg                 ri_GMII_valid_5d    ;
reg  [47:0]         r_target_mac        ;
reg  [47:0]         r_source_mac        ;
reg  [47:0]         r_rec_mac           ;
reg                 r_rec_mac_access    ;
reg  [15:0]         r_rec_cnt           ;
reg                 r_headr_check       ;
reg                 r_header_access     ;
reg  [15:0]         r_rec_type          ;//0x0800-IP 0X0806-ARP
reg                 r_crc_rst           ;
reg                 r_crc_en            ;
reg                 r_crc_en_1d         ;
reg  [15:0]         r_rec_5d_cnt        ;
reg  [31:0]         r_crc_result        ;
reg                 ro_crc_valid        ;

/***************wire******************/
wire [31:0]         w_crc_result        ;

/***************component*************/
CRC32_D8 CRC32_D8_u0(
  .i_clk            (i_clk              ),
  .i_rst            (r_crc_rst          ),
  .i_en             (r_crc_en           ),
  .i_data           (ri_GMII_data_5d       ),
  .o_crc            (w_crc_result       )   
);
/***************assign****************/
assign o_post_type     = r_rec_type             ;
assign o_post_data     = ri_GMII_data_5d        ;
assign o_post_last     = ro_post_last             ;
assign o_post_valid    = ro_post_valid            ;
assign o_rec_src_mac   = ro_rec_src_mac         ;
assign o_rec_src_valid = ro_rec_src_valid       ;
assign o_crc_error     = ro_crc_error           ;
assign o_crc_valid     = ro_crc_valid           ;
/***************always****************/

//数据打5拍,为了对齐信号
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst) begin
        ri_GMII_data        <= 'd0;
        ri_GMII_valid       <= 'd0;
        ri_GMII_data_1d     <= 'd0;
        ri_GMII_valid_1d    <= 'd0;
        ri_GMII_data_2d     <= 'd0;
        ri_GMII_valid_2d    <= 'd0;
        ri_GMII_data_3d     <= 'd0;
        ri_GMII_valid_3d    <= 'd0;
        ri_GMII_data_4d     <= 'd0;
        ri_GMII_valid_4d    <= 'd0;
    end else begin
        ri_GMII_data        <= i_GMII_data ;
        ri_GMII_valid       <= i_GMII_valid;
        ri_GMII_data_1d     <= ri_GMII_data ;
        ri_GMII_valid_1d    <= ri_GMII_valid;
        ri_GMII_data_2d     <= ri_GMII_data_1d ;
        ri_GMII_valid_2d    <= ri_GMII_valid_1d;
        ri_GMII_data_3d     <= ri_GMII_data_2d ;
        ri_GMII_valid_3d    <= ri_GMII_valid_2d;
        ri_GMII_data_4d     <= ri_GMII_data_3d ;
        ri_GMII_valid_4d    <= ri_GMII_valid_3d;
        ri_GMII_data_5d     <= ri_GMII_data_4d ;
        ri_GMII_valid_5d    <= ri_GMII_valid_4d;
    end     
end
//valid后,输入目标mac地址锁存
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_target_mac <= P_TARTGET_MAC;
    else if(i_target_mac_valid)
        r_target_mac <= i_target_mac;
    else
        r_target_mac <= r_target_mac;
end

//valid后,输入源mac地址锁存
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_source_mac <= P_SOURCE_MAC ;
    else if(i_source_mac_valid)
        r_source_mac <= i_source_mac;
    else
        r_source_mac <= r_source_mac;
end

//GMII接口输入有效 
// r_rec_cnt  为 6  停一个周期 接收SFD
// 继续 + 1
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_rec_cnt <= 'd0;
    else if(ri_GMII_valid && r_rec_cnt == 6 && ri_GMII_data == 8'h55)
        r_rec_cnt <= r_rec_cnt;
    else if(ri_GMII_valid)
        r_rec_cnt <= r_rec_cnt + 1;
    else 
        r_rec_cnt <= 'd0;
end

// r_rec_cnt  7 ~ 12 存好收到目的的MAC地址
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_rec_mac <= 'd0;
    else if(ri_GMII_valid && r_rec_cnt >= 7 && r_rec_cnt <= 12)
        r_rec_mac <= {r_rec_mac[39:0],ri_GMII_data};
    else 
        r_rec_mac <= r_rec_mac;
end

// r_rec_cnt  13 检测收到目的mac与自身mac是否相等
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_rec_mac_access <= 'd0;
    else if(r_rec_cnt == 13 && r_rec_mac != r_source_mac)
        r_rec_mac_access <= 'd0;
    else if(r_rec_cnt == 13 && (r_rec_mac == r_source_mac || &r_rec_mac))
        r_rec_mac_access <= 'd1;
    else 
        r_rec_mac_access <= r_rec_mac_access;
end
//r_rec_cnt   0~6  检验前导码 是否为55     再6 检测SFD 是否为D5
always@(*)
begin
    case(r_rec_cnt)
        0,1,2,3,4,5 :r_headr_check <= ri_GMII_data == 8'h55 ? 'd1 : 'd0;
        6           :r_headr_check <= ri_GMII_data == 8'hD5 || ri_GMII_data == 8'h55 ? 'd1 : 'd0;
        default     :r_headr_check <= 'd1;
    endcase
end

//头没有问题,就通过信号不拉低
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_header_access <= 'd1;
    else if(!ri_GMII_valid)
        r_header_access <= 'd1;
    else if(ri_GMII_valid && r_rec_cnt >= 0 && r_rec_cnt <= 6 && !r_headr_check)
        r_header_access <= 'd0;
    else 
        r_header_access <= r_header_access;
end

// r_rec_cnt 13~ 18 源MAC地址接收
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        ro_rec_src_mac <= 'd0;
    else if(ri_GMII_valid && r_rec_cnt >= 13 && r_rec_cnt <= 18)
        ro_rec_src_mac <= {ro_rec_src_mac[39:0],ri_GMII_data};
    else 
        ro_rec_src_mac <= ro_rec_src_mac;
end

// r_rec_cnt 19 源MAC地址接收有效
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        ro_rec_src_valid <= 'd0;
    else if(r_rec_cnt == 19)
        ro_rec_src_valid <= 'd1;
    else 
        ro_rec_src_valid <= ro_rec_src_valid;
end

//r_rec_cnt 19 ~ 20 接收类型
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_rec_type <= 'd0;
    else if(ri_GMII_valid && r_rec_cnt >= 19 && r_rec_cnt <= 20)
        r_rec_type <= {r_rec_type[7:0],ri_GMII_data};
    else 
        r_rec_type <= r_rec_type;
end 

//延迟5个周期的 GMII 有效    r_rec_5d_cnt + 1
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_rec_5d_cnt <= 'd0; 
    else if(ri_GMII_valid_5d)
        r_rec_5d_cnt <= r_rec_5d_cnt + 1;
    else
        r_rec_5d_cnt <= 'd0; 
end 
//正常信号的下降沿 有效为0
//延迟5个周期 计数为 21 有效为1
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        ro_post_valid <= 'd0;
    else if(ro_post_last)
        ro_post_valid <= 'd0;
    else if(r_rec_5d_cnt == 21)
        ro_post_valid <= 'd1;
    else 
        ro_post_valid <= ro_post_valid;
end

//GMII有效信号下降沿  输出 ro_post_last
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        ro_post_last <= 'd0;
    else if(!i_GMII_valid && ri_GMII_valid)
        ro_post_last <= 'd1;
    else 
        ro_post_last <= 'd0;
end

// always@(posedge i_clk,posedge i_rst)
// begin
//     if(i_rst)
//         ro_arp_valid <= 'd0;
//     else if(!ri_GMII_valid && ri_GMII_data_1d)
//         ro_arp_valid <= 'd0;
//     else if(r_rec_type == 16'h0806 && r_rec_5d_cnt == 20)
//         ro_arp_valid <= 'd1;
//     else 
//         ro_arp_valid <= ro_ip_valid;
// end

// always@(posedge i_clk,posedge i_rst)
// begin
//     if(i_rst)
//         ro_arp_last <= 'd0;
//     else if(!i_GMII_valid && ri_GMII_valid && r_rec_type == 16'h0806)
//         ro_arp_last <= 'd1;
//     else 
//         ro_arp_last <= 'd0;
// end
 
 //CRC使能信号 来 CRC模块数据复位信号
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_crc_rst <= 'd1;
    else if(r_rec_5d_cnt == 7)
        r_crc_rst <= 'd0;
    else if(!r_crc_en && r_crc_en_1d)
        r_crc_rst <= 'd1;
    else 
        r_crc_rst <= r_crc_rst;
end

// GMII有效的下降沿 关闭crc校验使能
//
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_crc_en <= 'd0;
    else if(!ri_GMII_valid && ri_GMII_data_1d)
        r_crc_en <= 'd0;
    else if(r_rec_5d_cnt == 7)
        r_crc_en <= 'd1;
    else 
        r_crc_en <= r_crc_en;
end

//CRC使能信号打拍
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_crc_en_1d <= 'd0;
    else 
        r_crc_en_1d <= r_crc_en;
end

//获取外部输入的CRC结果
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_crc_result <= 'd0;
    else if(ri_GMII_valid)
        r_crc_result <= {ri_GMII_data,r_crc_result[31:8]};
    else
        r_crc_result <= r_crc_result;
end

//CRC使能下降沿 CRC有效
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        ro_crc_valid <= 'd0;
    else if(!r_crc_en && r_crc_en_1d)
        ro_crc_valid <= 'd1;
    else 
        ro_crc_valid <= 'd0;
end

//CRC校验 error
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        ro_crc_error <= 'd0;
    else if(!P_CRC_CHECK)
        ro_crc_error <= 'd0;
    else if(!r_crc_en && r_crc_en_1d && r_crc_result != w_crc_result)
        ro_crc_error <= 'd1;
    else 
        ro_crc_error <= 'd0;
end

endmodule




2.2 MAC发送模块

module MAC_tx#(
    parameter       P_TARTGET_MAC   =   {8'h00,8'h00,8'h00,8'h00,8'h00,8'h00},
                    P_SOURCE_MAC    =   {8'h00,8'h00,8'h00,8'h00,8'h00,8'h00},
                    P_CRC_CHECK     =   1
)(
    input           i_clk       ,
    input           i_rst       ,

    /*--------info port--------*/   
    input  [47:0]   i_target_mac        ,
    input           i_target_mac_valid  ,
    input  [47:0]   i_source_mac        ,
    input           i_source_mac_valid  ,

    /*--------data port--------*/
    input           i_udp_valid         ,
    output          o_udp_ready         ,
    input  [15:0]   i_send_type         ,
    input  [15:0]   i_send_len          ,
    input  [7 :0]   i_send_data         ,
    input           i_send_last         ,
    input           i_send_valid        ,
    
    /*--------GMII port--------*/
    output [7 :0]   o_GMII_data         ,
    output          o_GMII_valid        
);

/***************function**************/

/***************parameter*************/

/***************port******************/             

/***************mechine***************/

/***************reg*******************/
reg  [15:0]         ri_send_type        ;
reg  [15:0]         ri_send_len         ;
reg  [7 :0]         ri_send_data        ;
reg                 ri_send_valid       ;
reg                 ri_send_valid_1d    ;
reg  [7 :0]         ro_GMII_data        ;
reg                 ro_GMII_valid       ;
reg                 ro_GMII_valid_1d    ;
reg  [47:0]         r_target_mac        ;
reg  [47:0]         r_source_mac        ;
reg                 r_fifo_mac_rd_en    ;
reg  [15:0]         r_mac_pkg_cnt       ;
reg  [7 :0]         r_mac_data          ;
reg                 r_mac_data_valid    ;
reg                 r_mac_data_valid_1d ;
reg  [15:0]         r_mac_data_cnt      ;
reg                 r_crc_rst           ;          
reg                 r_crc_en            ;
reg  [1 :0]         r_crc_out_cnt       ;  
reg                 r_crc_out_cnt_1d    ;
reg  [15:0]         r_gap_lat           ;
reg                 r_gap_lock          ;
reg  [15:0]         r_gap_cnt           ;
reg                 ri_udp_valid        ;
reg                 ro_udp_ready        ;

/***************wire******************/
wire [7 :0]         w_fifo_mac_dout     ;
wire                w_fifo_mac_full     ;
wire                w_fifo_mac_empty    ;
wire                w_send_valid_pos    ;
wire                w_send_valid_neg    ;
wire [31:0]         w_crc_result        ;

/***************component*************/
FIFO_MAC_8X64 FIFO_MAC_8X64_U0 (
  .clk              (i_clk              ),      // input wire clk
  .din              (ri_send_data       ),      // input wire [7 : 0] din
  .wr_en            (ri_send_valid      ),  // input wire wr_en
  .rd_en            (r_fifo_mac_rd_en   ),  // input wire rd_en
  .dout             (w_fifo_mac_dout    ),    // output wire [7 : 0] dout
  .full             (w_fifo_mac_full    ),    // output wire full
  .empty            (w_fifo_mac_empty   )  // output wire empty
);

CRC32_D8 CRC32_D8_u0(
  .i_clk            (i_clk              ),
  .i_rst            (r_crc_rst          ),
  .i_en             (r_crc_en           ),
  .i_data           (r_mac_data         ),
  .o_crc            (w_crc_result       )   
);

/***************assign****************/
assign o_GMII_data      = ro_GMII_data      ;
assign o_GMII_valid     = ro_GMII_valid     ;
assign w_send_valid_pos = ri_send_valid & !ri_send_valid_1d;
assign w_send_valid_neg = !ri_send_valid & ri_send_valid_1d;
assign o_udp_ready      = ro_udp_ready      ;

/***************always****************/
//锁存 目的mac
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_target_mac <= P_TARTGET_MAC;
    else if(i_target_mac_valid)
        r_target_mac <= i_target_mac;
    else
        r_target_mac <= r_target_mac;
end
//锁存 源mac
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_source_mac <= P_SOURCE_MAC ;
    else if(i_source_mac_valid)
        r_source_mac <= i_source_mac;
    else
        r_source_mac <= r_source_mac;
end

//锁存输入的 发送mac帧信息
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst) begin
        ri_send_type  <= 'd0;
        ri_send_len   <= 'd0;
        ri_send_data  <= 'd0;
        ri_send_valid <= 'd0;
    end else if(i_send_valid) begin
        ri_send_type  <= i_send_type ;
        ri_send_len   <= i_send_len  ;
        ri_send_data  <= i_send_data ;
        ri_send_valid <= i_send_valid;
    end else begin
        ri_send_type  <= ri_send_type ;
        ri_send_len   <= ri_send_len  ;
        ri_send_data  <= 'd0 ;
        ri_send_valid <= 'd0;
    end
end

//mac帧的计数器 
//CRC校验输出完成 停止
//输入信号有效上升沿开始 计数
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_mac_pkg_cnt <= 'd0;
    else if(r_crc_out_cnt == 3)
        r_mac_pkg_cnt <= 'd0;
    else if(w_send_valid_pos || r_mac_pkg_cnt)
        r_mac_pkg_cnt <= r_mac_pkg_cnt + 1;
    else 
        r_mac_pkg_cnt <= r_mac_pkg_cnt;
end
      
//组mac帧 :  前导码 + SFD + 目的mac + 源mac
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_mac_data <= 'd0;
    else case(r_mac_pkg_cnt)
        0,1,2,3,4,5,6   :r_mac_data <= 8'h55;
        7               :r_mac_data <= 8'hd5;
        8               :r_mac_data <= ri_send_type == 16'h0806 ? 8'hff : r_target_mac[47:40];
        9               :r_mac_data <= ri_send_type == 16'h0806 ? 8'hff : r_target_mac[39:32];
        10              :r_mac_data <= ri_send_type == 16'h0806 ? 8'hff : r_target_mac[31:24];
        11              :r_mac_data <= ri_send_type == 16'h0806 ? 8'hff : r_target_mac[23:16];
        12              :r_mac_data <= ri_send_type == 16'h0806 ? 8'hff : r_target_mac[15: 8];
        13              :r_mac_data <= ri_send_type == 16'h0806 ? 8'hff : r_target_mac[7 : 0];
        14              :r_mac_data <= r_source_mac[47:40];
        15              :r_mac_data <= r_source_mac[39:32];
        16              :r_mac_data <= r_source_mac[31:24];
        17              :r_mac_data <= r_source_mac[23:16];
        18              :r_mac_data <= r_source_mac[15: 8];
        19              :r_mac_data <= r_source_mac[7 : 0];
        20              :r_mac_data <= ri_send_type[15: 8];
        21              :r_mac_data <= ri_send_type[7 : 0];
        default         :r_mac_data <= w_fifo_mac_dout;
    endcase
end

//mac有效信号
// mac数据计数到值 关闭
//发送有效上升沿 开启
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_mac_data_valid <= 'd0;
    else if(r_mac_data_cnt == ri_send_len + 1)
        r_mac_data_valid <= 'd0;
    else if(w_send_valid_pos)
        r_mac_data_valid <= 'd1;
    else 
        r_mac_data_valid <= r_mac_data_valid;
end

//mac总数计数器
//到设置长度清零
//fifo读使能 开启计数
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_mac_data_cnt <= 'd0;
    else if(r_mac_data_cnt == ri_send_len + 1)
        r_mac_data_cnt <= 'd0;
    else if(r_fifo_mac_rd_en | r_mac_data_cnt)
        r_mac_data_cnt <= r_mac_data_cnt + 1;
    else 
        r_mac_data_cnt <= r_mac_data_cnt;
end

//mac帧的计数器 到20 开启读fifo使能
//到mac总数关闭
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_fifo_mac_rd_en <= 'd0;
    else if(r_mac_data_cnt == ri_send_len - 1)
        r_fifo_mac_rd_en <= 'd0;
    else if(r_mac_pkg_cnt == 20)
        r_fifo_mac_rd_en <= 'd1;
    else 
        r_fifo_mac_rd_en <= r_fifo_mac_rd_en;
end

//CRC校验复位
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_crc_rst <= 'd1;
    else if(r_mac_pkg_cnt == 8 )
        r_crc_rst <= 'd0;
    else if(r_crc_out_cnt == 3)
        r_crc_rst <= 'd1;
    else 
        r_crc_rst <= r_crc_rst;
end

//CRC校验使能,mac帧计时器为 8时  开启
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_crc_en <= 'd0;
    else if(r_mac_data_cnt == ri_send_len + 1)
        r_crc_en <= 'd0;
    else if(r_mac_pkg_cnt == 8 )
        r_crc_en <= 'd1;
    else 
        r_crc_en <= r_crc_en;
end

// r_crc_out_cnt 数据有效下降沿开启计数   等于3清零
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_crc_out_cnt <= 'd0;
    else if(r_crc_out_cnt == 3)   
        r_crc_out_cnt <= 'd0;
    else if((!r_mac_data_valid && r_mac_data_valid_1d) || r_crc_out_cnt)
        r_crc_out_cnt <= r_crc_out_cnt + 1;
    else 
        r_crc_out_cnt <= r_crc_out_cnt;
end

//输出mac帧数据
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        ro_GMII_data <= 'd0;
    else if(r_mac_data_valid)
        ro_GMII_data <= r_mac_data;
    else case(r_crc_out_cnt)
        0       :ro_GMII_data <= w_crc_result[7 : 0];
        1       :ro_GMII_data <= w_crc_result[15: 8];
        2       :ro_GMII_data <= w_crc_result[23:16];
        3       :ro_GMII_data <= w_crc_result[31:24];
        default :ro_GMII_data <= 'd0;
    endcase   
end 

// r_crc_out_cnt_1d 
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_crc_out_cnt_1d <= 'd0;
    else if(r_crc_out_cnt == 3)
        r_crc_out_cnt_1d <= 'd1;
    else 
        r_crc_out_cnt_1d <= 'd0;
end

//数据有效的时候 GMII输出有效
//只有在CRC结束,r_crc_out_cnt_1d 拉高的时候,GMII输出无效
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        ro_GMII_valid <= 'd0;
    else if(r_crc_out_cnt_1d)
        ro_GMII_valid <= 'd0;
    else if(r_mac_data_valid)
        ro_GMII_valid <= 'd1;
    else    
        ro_GMII_valid <= ro_GMII_valid;
end 
//信号打拍 获得上升沿
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst) begin
        ri_send_valid_1d    <= 'd0;
        r_mac_data_valid_1d <= 'd0;
    end else begin
        ri_send_valid_1d    <= ri_send_valid   ;
        r_mac_data_valid_1d <= r_mac_data_valid;
    end
end
/*-------------------UDP------------------------*/
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst) begin
        ri_udp_valid <= 'd0 ;
        ro_GMII_valid_1d <= 'd0;
    end else begin
        ri_udp_valid <= i_udp_valid;
        ro_GMII_valid_1d <= ro_GMII_valid;
    end
end

always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        ro_udp_ready <= 'd1;
    else if(i_udp_valid)
        ro_udp_ready <= 'd0;
    else if( r_mac_data_cnt == ri_send_len  - 1)
        ro_udp_ready <= 'd1;
    else 
        ro_udp_ready <= ro_udp_ready;
end


endmodule

3.1 IP接收模块

module IP_rx#(
    parameter       P_ST_TARGET_IP = {8'd192,8'd168,8'd1,8'd0},
    parameter       P_ST_SOURCE_IP = {8'd192,8'd168,8'd1,8'd1}
)(
    input           i_clk               ,
    input           i_rst               ,

    /*--------info port --------*/
    input  [31:0]   i_target_ip         ,
    input           i_target_valid      ,
    input  [31:0]   i_source_ip         ,
    input           i_source_valid      ,

    /*--------data port--------*/
    output [15:0]   o_udp_len           ,
    output [7 :0]   o_udp_data          ,
    output          o_udp_last          ,
    output          o_udp_valid         ,
    output [15:0]   o_icmp_len          ,
    output [7 :0]   o_icmp_data         ,
    output          o_icmp_last         ,
    output          o_icmp_valid        ,

    output [31:0]   o_source_ip         ,
    output          o_source_ip_valid   ,

    /*--------mac port--------*/
    input  [7 :0]   i_mac_data          ,
    input           i_mac_last          ,
    input           i_mac_valid

);

/***************function**************/

/***************parameter*************/

/***************port******************/             

/***************mechine***************/

/***************reg*******************/
reg  [31:0]         r_target_ip         ;
reg  [31:0]         r_source_ip         ;
reg  [7 :0]         ri_mac_data         ;
reg  [7 :0]         ri_mac_data_1d      ;
reg                 ri_mac_last         ;
reg                 ri_mac_valid        ;
reg                 ri_mac_valid_1d     ;
reg  [15:0]         ro_udp_len          ;
reg                 ro_udp_last         ;
reg                 ro_udp_valid        ;
reg  [15:0]         ro_icmp_len         ;
reg                 ro_icmp_last        ;
reg                 ro_icmp_valid       ;
reg  [15:0]         r_ip_len            ;
reg  [7 :0]         r_ip_type           ;
reg  [31:0]         r_ip_source         ;
reg  [31:0]         r_ip_target         ;
reg  [15:0]         r_ip_cnt            ;
reg                 ro_source_ip_valid  ;

/***************wire******************/

/***************component*************/

/***************assign****************/
assign o_udp_data   = ri_mac_data_1d    ;
assign o_icmp_data  = ri_mac_data_1d    ;
assign o_udp_len    = ro_udp_len        ;
assign o_udp_last   = ro_udp_last       ;
assign o_udp_valid  = ro_udp_valid      ;
assign o_icmp_len   = ro_icmp_len       ;
assign o_icmp_last  = ro_icmp_last      ;
assign o_icmp_valid = ro_icmp_valid     ;
assign o_source_ip       = r_ip_source  ;
assign o_source_ip_valid = ro_source_ip_valid;
/***************always****************/
//目的ip有效信号 锁存 目的ip
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_target_ip <= P_ST_TARGET_IP;
    else if(i_target_valid)
        r_target_ip <= i_target_ip;
    else 
        r_target_ip <= r_target_ip;
end

//源ip效信号 锁存 源ip
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_source_ip <= P_ST_SOURCE_IP;
    else if(i_source_valid)
        r_source_ip <= i_source_ip;
    else 
        r_source_ip <= r_source_ip;
end

//信号和数据打拍
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst) begin
        ri_mac_data  <= 'd0;
        ri_mac_last  <= 'd0;
        ri_mac_valid <= 'd0;
        ri_mac_data_1d <= 'd0;
        ri_mac_valid_1d <= 'd0;
    end else begin
        ri_mac_data  <= i_mac_data ;
        ri_mac_last  <= i_mac_last ;
        ri_mac_valid <= i_mac_valid;
        ri_mac_data_1d <= ri_mac_data;
        ri_mac_valid_1d <= ri_mac_valid;
    end
end

//mac端口有效  ip计数器+1
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_ip_cnt <= 'd0;
    else if(ri_mac_valid)
        r_ip_cnt <= r_ip_cnt + 1;
    else 
        r_ip_cnt <= 'd0;
end

// 2 3 字节数据为ip报文总长度
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_ip_len <= 'd0;
    else if(r_ip_cnt >= 2 && r_ip_cnt <= 3)
        r_ip_len <= {r_ip_len[7:0],ri_mac_data};
    else 
        r_ip_len <= r_ip_len;
end

//第9字节 ip 协议类型 
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_ip_type <= 'd0;
    else if(r_ip_cnt == 9)
        r_ip_type <= ri_mac_data;
    else 
        r_ip_type <= r_ip_type;
end

//第12 13 14 15字节  ip源地址
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_ip_source <= 'd0;
    else if(r_ip_cnt >= 12 && r_ip_cnt <= 15)
        r_ip_source <= {r_ip_source[23:0],ri_mac_data};
    else    
        r_ip_source <= r_ip_source;
end     
//输出ip源地址有效
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        ro_source_ip_valid <= 'd0;
    else if(r_ip_cnt == 15)
        ro_source_ip_valid <= 'd1;
    else 
        ro_source_ip_valid <= 'd0;
end

//第16 17 18 19字节  ip目的地址
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_ip_target <= 'd0;
    else if(r_ip_cnt >= 16 && r_ip_cnt <= 19)
        r_ip_target <= {r_ip_target[23:0],ri_mac_data};
    else 
        r_ip_target <= r_ip_target;
end

//计算UDP 或者 ICMP 的数据长度
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst) begin
        ro_udp_len  <= 'd0;
        ro_icmp_len <= 'd0;
    end else begin
        ro_udp_len  <= r_ip_len - 20;
        ro_icmp_len <= r_ip_len - 20;
    end 
end

// 第20字节  检测是目的和源IP是否正确
//检测协议类型  UDP还是ICMP
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        ro_udp_valid <= 'd0;
    else if(!ri_mac_valid && ri_mac_valid_1d)
        ro_udp_valid <= 'd0;
    else if(r_ip_cnt == 20 && r_ip_target == r_source_ip && r_ip_type == 17)
        ro_udp_valid <= 'd1;
    else 
        ro_udp_valid <= ro_udp_valid;
end
//ICMP  同上
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        ro_icmp_valid <= 'd0;
    else if(!ri_mac_valid && ri_mac_valid_1d)
        ro_icmp_valid <= 'd0;
    else if(r_ip_cnt == 20 && r_ip_target == r_source_ip && r_ip_type == 1)
        ro_icmp_valid <= 'd1;
    else 
        ro_icmp_valid <= ro_icmp_valid;
end

//i_mac_valid 信号的下降沿 拉高 last信号
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        ro_udp_last <= 'd0;
    else if(!i_mac_valid && ri_mac_valid && r_ip_type == 17)
        ro_udp_last <= 'd1;
    else 
        ro_udp_last <= 'd0;
end

always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        ro_icmp_last <= 'd0;
    else if(!i_mac_valid && ri_mac_valid && r_ip_type == 1)
        ro_icmp_last <= 'd1;
    else 
        ro_icmp_last <= 'd0;
end

endmodule

3.2 IP发送模块

module IP_tx#(
    parameter       P_ST_TARGET_IP = {8'd192,8'd168,8'd1,8'd0},
    parameter       P_ST_SOURCE_IP = {8'd192,8'd168,8'd1,8'd1}
)(
    input               i_clk       ,
    input               i_rst       ,

    /*--------info port --------*/
    input  [31:0]   i_target_ip         ,
    input           i_target_valid      ,
    input  [31:0]   i_source_ip         ,
    input           i_source_valid      ,

    /*--------data port--------*/
    input  [7 :0]   i_send_type         ,
    input  [15:0]   i_send_len          ,
    input  [7 :0]   i_send_data         ,
    input           i_send_last         ,
    input           i_send_valid        ,

    output [31:0]   o_arp_seek_ip       ,
    output          o_arp_seek_valid    ,

    /*--------mac port--------*/
    output [15:0]   o_mac_type          ,
    output [15:0]   o_mac_len           ,
    output [7 :0]   o_mac_data          ,
    output          o_mac_last          ,
    output          o_mac_valid         

);

/***************function**************/

/***************parameter*************/

/***************port******************/             

/***************mechine***************/

/***************reg*******************/
reg  [31:0]         r_target_ip         ;
reg  [31:0]         r_source_ip         ;
reg  [7 :0]         ri_send_type        ;
reg  [15:0]         ri_send_len         ;
reg  [7 :0]         ri_send_data        ;
reg                 ri_send_last        ;
reg                 ri_send_valid       ;
reg                 ri_send_valid_1d    ;
reg                 r_fifo_ip_rd_en     ;
reg  [7 :0]         r_ip_data           ;
reg  [7 :0]         r_ip_valid          ;
reg  [15:0]         r_ip_data_cnt       ;
reg  [15:0]         r_ip_message        ;
reg  [31:0]         r_ip_check          ;
reg  [15:0]         ro_mac_type         ;  
reg                 ro_mac_last         ; 
reg  [31:0]         ro_arp_seek_ip      ;
reg                 ro_arp_seek_valid   ;

/***************wire******************/
wire [31:0]         w_fifo_ip_dout      ;
wire                w_fifo_ip_full      ;
wire                w_fifo_ip_empty     ;

/***************component*************/
//把要发送的数据存进FIFO,要发送时读出来
FIFO_MAC_8X64 FIFO_IP_8X64_U0 (
  .clk          (i_clk              ),      // input wire clk
  .din          (ri_send_data       ),      // input wire [7 : 0] din
  .wr_en        (ri_send_valid      ),  // input wire wr_en
  .rd_en        (r_fifo_ip_rd_en    ),  // input wire rd_en
  .dout         (w_fifo_ip_dout     ),    // output wire [7 : 0] dout
  .full         (w_fifo_ip_full     ),    // output wire full
  .empty        (w_fifo_ip_empty    )  // output wire empty
);


/***************assign****************/
assign o_mac_data  = r_ip_data  ;
assign o_mac_valid = r_ip_valid ;
assign o_mac_len   = ri_send_len; 
assign o_mac_type  = ro_mac_type;
assign o_mac_last  = ro_mac_last;
assign o_arp_seek_ip    = ro_arp_seek_ip   ;
assign o_arp_seek_valid = ro_arp_seek_valid;
/***************always****************/
//目的地址有效  锁存
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_target_ip <= P_ST_TARGET_IP;
    else if(i_target_valid)
        r_target_ip <= i_target_ip;
    else 
        r_target_ip <= r_target_ip;
end

//源地址有效  锁存
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_source_ip <= P_ST_SOURCE_IP;
    else if(i_source_valid)
        r_source_ip <= i_source_ip;
    else 
        r_source_ip <= r_source_ip;
end

//锁存 类型和数据等信息   ip报文长度 为 UDP报文 + 20
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst) begin
        ri_send_type  <= 'd0;
        ri_send_len   <= 'd0;
        ri_send_data  <= 'd0;
        ri_send_last  <= 'd0;
        ri_send_valid <= 'd0;
    end else if(i_send_valid) begin
        ri_send_type  <= i_send_type    ;
        ri_send_len   <= i_send_len + 20;
        ri_send_data  <= i_send_data    ;
        ri_send_last  <= i_send_last    ;
        ri_send_valid <= i_send_valid   ;
    end else begin
        ri_send_type  <= ri_send_type   ;
        ri_send_len   <= ri_send_len    ;
        ri_send_data  <= ri_send_data   ;
        ri_send_last  <= 'd0;
        ri_send_valid <= 'd0;
    end
end   

// r_ip_data_cnt 计数
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_ip_data_cnt <= 'd0;
    else if(r_ip_data_cnt == ri_send_len - 1)
        r_ip_data_cnt <= 'd0;
    else if(ri_send_valid || r_ip_data_cnt)
        r_ip_data_cnt <= r_ip_data_cnt + 1;
    else 
        r_ip_data_cnt <= r_ip_data_cnt;
end

// ip报文的个数  计数
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_ip_message <= 'd0;
    else if(o_mac_last)
        r_ip_message <= r_ip_message + 1;
    else 
        r_ip_message <= r_ip_message;
end

//进行首部校验和
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_ip_check <= 'd0;
    else if(ri_send_valid && r_ip_data_cnt == 0)
        r_ip_check <= 16'h4500 + ri_send_len + r_ip_message + 16'h4000 + {8'd64,ri_send_type} + r_source_ip[31:16] +
                      r_source_ip[15:0] + r_target_ip[31:16] + r_target_ip[15:0];
    else if(r_ip_data_cnt == 1)
        r_ip_check <= r_ip_check[31:16] + r_ip_check[15:0];
    else if(r_ip_data_cnt == 2)
        r_ip_check <= r_ip_check[31:16] + r_ip_check[15:0];
    else if(r_ip_data_cnt == 3)
        r_ip_check <= ~r_ip_check;
    else 
        r_ip_check <= r_ip_check;
end

//打拍生成边沿
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        ri_send_valid_1d <= 'd0;
    else    
        ri_send_valid_1d <= ri_send_valid;
end

//发送有效信号上升沿 ip帧有效拉高
// mac帧结束信号拉高,ip帧有效拉低
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_ip_valid <= 'd0;
    else if(ro_mac_last)
        r_ip_valid <= 'd0;
    else if(ri_send_valid && !ri_send_valid_1d)
        r_ip_valid <= 'd1;
    else 
        r_ip_valid <= r_ip_valid;
end
//组帧输出
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_ip_data <= 'd0;
    else case(r_ip_data_cnt)
        0           : r_ip_data <= {4'b0100,4'b0101};           //版本+首部长度
        1           : r_ip_data <= 'd0;                         //服务类型
        2           : r_ip_data <= ri_send_len[15:8];           //总长度的高8位
        3           : r_ip_data <= ri_send_len[7 :0];           //总长度的低8位
        4           : r_ip_data <= r_ip_message[15:8];          //报文标识的高8位
        5           : r_ip_data <= r_ip_message[7 :0];          //报文标识的低8位
        6           : r_ip_data <= {3'b010,5'b00000};           //标志+片偏移
        7           : r_ip_data <= 'd0;                         //片偏移
        8           : r_ip_data <= 'd64;                        //生存时间
        9           : r_ip_data <= ri_send_type;                //协议类型
        10          : r_ip_data <= r_ip_check[15:8];
        11          : r_ip_data <= r_ip_check[7 :0];
        12          : r_ip_data <= r_source_ip[31:24];
        13          : r_ip_data <= r_source_ip[23:16];
        14          : r_ip_data <= r_source_ip[15:8];
        15          : r_ip_data <= r_source_ip[7 :0];
        16          : r_ip_data <= r_target_ip[31:24];
        17          : r_ip_data <= r_target_ip[23:16];
        18          : r_ip_data <= r_target_ip[15:8];
        19          : r_ip_data <= r_target_ip[7 :0];
        default     : r_ip_data <= w_fifo_ip_dout;
    endcase
end

// ip帧 计数到18  从FIFO中读取数据
// mac帧结束信号拉高,不读了
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_fifo_ip_rd_en <= 'd0;
    else if(ro_mac_last)
        r_fifo_ip_rd_en <= 'd0;
    else if(r_ip_data_cnt == 18)
        r_fifo_ip_rd_en <= 'd1;
    else 
        r_fifo_ip_rd_en <= r_fifo_ip_rd_en;
end

//ip帧计数器计到最大   mac 帧结束了
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        ro_mac_last <= 'd0;
    else if(r_ip_data_cnt == ri_send_len - 1)
        ro_mac_last <= 'd1;
    else 
        ro_mac_last <= 'd0;
end

//输出mac层的报文类型
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst) begin
        ro_mac_type <= 'd0;
    end else begin
        ro_mac_type <= 16'h0800;
    end
end 

//ARP
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst) begin
        ro_arp_seek_ip    <= P_ST_TARGET_IP;
        ro_arp_seek_valid <= 'd0;
    end else if(ri_send_valid && !ri_send_valid_1d) begin
        ro_arp_seek_ip    <= r_target_ip;
        ro_arp_seek_valid <= 'd1;
    end else begin
        ro_arp_seek_ip    <= ro_arp_seek_ip;
        ro_arp_seek_valid <= 'd0;
    end
end 
endmodule

4.1 UDP接收模块

module UDP_rx#(
    parameter           P_TARGET_PORT   =  16'h8080 ,
                        P_SOURCE_PORT   =  16'h8080
)(
    input               i_clk           ,
    input               i_rst           ,

    /*--------info port-------*/
    input  [15:0]       i_target_port   ,
    input               i_target_valid  ,
    input  [15:0]       i_source_port   ,
    input               i_source_valid  ,

    /*--------data port--------*/
    output [15:0]       o_udp_len       ,
    output [7 :0]       o_udp_data      ,
    output              o_udp_last      ,
    output              o_udp_valid     ,

    /*--------ip port--------*/
    input  [15:0]       i_ip_len        ,
    input  [7 :0]       i_ip_data       ,
    input               i_ip_last       ,
    input               i_ip_valid      
);

/***************function**************/

/***************parameter*************/

/***************port******************/             

/***************mechine***************/

/***************reg*******************/
reg  [15:0]             r_target_port   ;
reg  [15:0]             r_source_port   ;
reg  [15:0]             ri_ip_len       ;
reg  [7 :0]             ri_ip_data      ;
reg                     ri_ip_last      ;
reg                     ri_ip_valid     ;
reg  [15:0]             ro_udp_len      ;
reg                     ro_udp_last     ;
reg                     ro_udp_valid    ;
reg  [15:0]             r_udp_cnt       ;

/***************wire******************/

/***************component*************/

/***************assign****************/
assign o_udp_len   = ro_udp_len         ;
assign o_udp_data  = ri_ip_data         ;
assign o_udp_last  = ro_udp_last        ;
assign o_udp_valid = ro_udp_valid       ;
/***************always****************/
//锁存 目标端口
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_target_port <= 'd0;
    else if(i_target_valid)       
        r_target_port <= i_target_port;
    else 
        r_target_port <= r_target_port;
end

//锁存 源端口
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_source_port <= 'd0;
    else if(i_source_valid)       
        r_source_port <= i_source_port;
    else 
        r_source_port <= r_source_port;
end

//ip有效信号 锁存ip的信息 
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst) begin
        ri_ip_len   <= 0;
        ri_ip_data  <= 0;
        ri_ip_last  <= 0;
        ri_ip_valid <= 0;
    end else if(i_ip_valid) begin
        ri_ip_len   <= i_ip_len  ;
        ri_ip_data  <= i_ip_data ;
        ri_ip_last  <= i_ip_last ;
        ri_ip_valid <= i_ip_valid;
    end else begin
        ri_ip_len   <= ri_ip_len  ;
        ri_ip_data  <= 'd0 ;
        ri_ip_last  <= 'd0 ;
        ri_ip_valid <= 'd0;
    end 
end

//ip有效信号,r_udp_cnt + 1
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_udp_cnt <= 'd0;
    else if(ri_ip_valid)
        r_udp_cnt <= r_udp_cnt + 1;
    else 
        r_udp_cnt <= 'd0;
end 
//UDP帧的长度 为 IP帧长度 - 8
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        ro_udp_len <= 'd0;
    else 
        ro_udp_len <= ri_ip_len - 8;
end

//UDP接收到第7位 拉高UDP有效,跟数据一起出来
//UDP发送到长度-1 时,拉低有效信号
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        ro_udp_valid <= 'd0;
    else if(r_udp_cnt == ri_ip_len - 1)
        ro_udp_valid <= 'd0;
    else if(r_udp_cnt == 7)
        ro_udp_valid <= 'd1;
    else 
        ro_udp_valid <= ro_udp_valid;
end
//拉高last结束信号
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)   
        ro_udp_last <= 'd0;
    else if(r_udp_cnt == ri_ip_len - 2)
        ro_udp_last <= 'd1;
    else 
        ro_udp_last <= 'd0;
end

endmodule

4.2 UDP发送模块

module UDP_tx#(
    parameter           P_TARGET_PORT   =  16'h8080 ,
                        P_SOURCE_PORT   =  16'h8080
)(
    input               i_clk           ,
    input               i_rst           ,

    /*--------info port-------*/
    input  [15:0]       i_target_port   ,
    input               i_target_valid  ,
    input  [15:0]       i_source_port   ,
    input               i_source_valid  ,

    /*--------data port--------*/
    input  [15:0]       i_send_len      ,
    input  [7 :0]       i_send_data     ,
    input               i_send_last     ,
    input               i_send_valid    ,

    /*--------ip port--------*/
    output [15:0]       o_ip_len        ,
    output [7 :0]       o_ip_data       ,
    output              o_ip_last       ,
    output              o_ip_valid      
);

/***************function**************/

/***************parameter*************/
localparam              P_ST_MIN_LEN = 18 + 8;

/***************port******************/             

/***************mechine***************/

/***************reg*******************/
reg  [15:0]             r_target_port   ;
reg  [15:0]             r_source_port   ;
reg  [15:0]             ri_send_len     ;
reg  [7 :0]             ri_send_data    ;
reg                     ri_send_last    ;
reg                     ri_send_valid   ;
reg  [15:0]             ro_ip_len       ;
reg  [7 :0]             ro_ip_data      ;
reg                     ro_ip_last      ;
reg                     ro_ip_valid     ;
reg                     r_fifo_udp_rd_en; 
reg  [15:0]             r_udp_cnt       ;
reg                     r_fifo_udp_empty;

/***************wire******************/
wire [7:0]              w_fifo_udp_dout ;   
wire                    w_fifo_udp_full ;   
wire                    w_fifo_udp_empty;   

/***************component*************/
//要写的数据存进FIFO
FIFO_MAC_8X64 FIFO_UDP_8X64_U0 (
  .clk          (i_clk              ),      // input wire clk
  .din          (ri_send_data       ),      // input wire [7 : 0] din
  .wr_en        (ri_send_valid      ),  // input wire wr_en
  .rd_en        (r_fifo_udp_rd_en   ),  // input wire rd_en
  .dout         (w_fifo_udp_dout    ),    // output wire [7 : 0] dout
  .full         (w_fifo_udp_full    ),    // output wire full
  .empty        (w_fifo_udp_empty   )  // output wire empty
);

/***************assign****************/
assign o_ip_len   = ro_ip_len           ;
assign o_ip_data  = ro_ip_data          ;
assign o_ip_last  = ro_ip_last          ;
assign o_ip_valid = ro_ip_valid         ;

/***************always****************/
//锁存 目的端口
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_target_port <= P_TARGET_PORT;
    else if(i_target_valid)       
        r_target_port <= i_target_port;
    else 
        r_target_port <= r_target_port;
end

//锁存 源端口
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_source_port <= P_SOURCE_PORT;
    else if(i_source_valid)       
        r_source_port <= i_source_port;
    else 
        r_source_port <= r_source_port;
end

//锁存输入的IP数据
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst) begin
        ri_send_data  <= 'd0;
        ri_send_last  <= 'd0;
        ri_send_valid <= 'd0;
    end else begin
        ri_send_data  <= i_send_data ;
        ri_send_last  <= i_send_last ;
        ri_send_valid <= i_send_valid;
    end
end

//锁存输入的数据长度
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        ri_send_len     <= 'd0;
    else if(i_send_valid)   
        ri_send_len     <= i_send_len  ;
    else 
        ri_send_len     <= ri_send_len;
end

//发送UDP数据长度小于18 并且已经完成18+8 的UDP帧 ,后计数器清空
//大于18 ,正常发完
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)    
        r_udp_cnt <= 'd0;
    else if(ri_send_len < 18 && r_udp_cnt == P_ST_MIN_LEN - 1)
        r_udp_cnt <= 'd0;
    else if(ri_send_len >= 18 && r_udp_cnt == (ri_send_len + 8) - 1)
        r_udp_cnt <= 'd0;
    else if(ri_send_valid || r_udp_cnt)
        r_udp_cnt <= r_udp_cnt + 1;
    else 
        r_udp_cnt <= r_udp_cnt;
end

//如果数据长度小于18 就默认18
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        ro_ip_len <= 'd0;
    else if(ri_send_len < 18)
        ro_ip_len <= 18;
    else 
        ro_ip_len <= ri_send_len + 8;
end


//如果收到ip_last信号,ip有效拉低
//收到输入有效信号,ip有效拉高
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        ro_ip_valid <= 'd0;
    else if(ro_ip_last)
        ro_ip_valid <= 'd0;
    else if(ri_send_valid)
        ro_ip_valid <= 'd1;
    else 
        ro_ip_valid <= ro_ip_valid;
end
//UDP发完后,拉高ip_last信号
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        ro_ip_last <= 'd0;
    else if(ri_send_len < 18 && r_udp_cnt == P_ST_MIN_LEN - 1)
        ro_ip_last <= 'd1;
    else if(ri_send_len >= 18 && r_udp_cnt == (ri_send_len + 8) - 1)
        ro_ip_last <= 'd1;
    else 
        ro_ip_last <= 'd0;
end

//输出完8字节 UDP帧的头 FIFO读使能打开
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_fifo_udp_rd_en <= 'd0;
    else if(r_udp_cnt == (ri_send_len + 8) - 1)
        r_fifo_udp_rd_en <= 'd0;
    else if(r_udp_cnt == 6)
        r_fifo_udp_rd_en <= 'd1;
    else 
        r_fifo_udp_rd_en <= r_fifo_udp_rd_en;
end

//空信号打拍
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_fifo_udp_empty <= 'd0;
    else 
        r_fifo_udp_empty <= w_fifo_udp_empty;
end

//组帧输出
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        ro_ip_data <= 'd0;
    else case(r_udp_cnt)
        0           : ro_ip_data <= r_source_port[15:8];
        1           : ro_ip_data <= r_source_port[7 :0];
        2           : ro_ip_data <= r_target_port[15:8];
        3           : ro_ip_data <= r_target_port[7 :0];
        4           : ro_ip_data <= ro_ip_len[15:8];
        5           : ro_ip_data <= ro_ip_len[7 :0];
        6           : ro_ip_data <= 'd0;
        7           : ro_ip_data <= 'd0;
        default     : ro_ip_data <= !r_fifo_udp_empty ? w_fifo_udp_dout : 'd0;
    endcase         
end

endmodule

5.1 ICMP接收模块

module ICMP_rx(
    input           i_clk       ,
    input           i_rst       ,

    /*--------rec port--------*/
    input  [15:0]   i_icmp_len          ,
    input  [7 :0]   i_icmp_data         ,
    input           i_icmp_last         ,
    input           i_icmp_valid        ,           

    /*--------send port--------*/
    output          o_trig_reply        ,
    output  [15:0]  o_trig_seq          
);

/***************function**************/

/***************parameter*************/

/***************port******************/             

/***************mechine***************/

/***************reg*******************/
reg  [15:0]         ri_icmp_len         ;
reg  [7 :0]         ri_icmp_data        ;
reg                 ri_icmp_last        ;
reg                 ri_icmp_valid       ;
reg                 ro_trig_reply       ;
reg  [15:0]         r_icmp_cnt          ;
reg  [7 :0]         r_type              ;
reg  [15:0]         ro_trig_seq         ;

/***************wire******************/

/***************component*************/

/***************assign****************/
assign o_trig_reply = ro_trig_reply     ;
assign o_trig_seq   = ro_trig_seq       ;

/***************always****************/
//输入信号打拍
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst) begin
        ri_icmp_len   <= 'd0;
        ri_icmp_data  <= 'd0;
        ri_icmp_last  <= 'd0;
        ri_icmp_valid <= 'd0;
    end else begin
        ri_icmp_len   <= i_icmp_len  ;
        ri_icmp_data  <= i_icmp_data ;
        ri_icmp_last  <= i_icmp_last ;
        ri_icmp_valid <= i_icmp_valid;
    end
end

//开始计数
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_icmp_cnt <= 'd0;
    else if(ri_icmp_valid)
        r_icmp_cnt <= r_icmp_cnt + 1;
    else 
        r_icmp_cnt <= 'd0;
end

//存下icmp类型
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_type <= 'd0;
    else if(ri_icmp_valid && r_icmp_cnt == 0)
        r_type <= ri_icmp_data;
    else 
        r_type <= r_type;
end

//ICMP帧的 序号 
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        ro_trig_seq <= 'd0;
    else if(r_icmp_cnt >=6 && r_icmp_cnt <= 7)
        ro_trig_seq <= {ro_trig_seq[7 :0],ri_icmp_data};
    else 
        ro_trig_seq <= ro_trig_seq;
end

//类型为8  计数8个 拉高序号的回复信号
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        ro_trig_reply <= 'd0;
    else if(r_icmp_cnt == 7 && r_type == 8)
        ro_trig_reply <= 'd1;
    else 
        ro_trig_reply <= 'd0;
end



endmodule

5.2 ICMP发送模块

module ICMP_tx(
    input           i_clk           ,
    input           i_rst           ,

    input           i_trig_reply    ,
    input  [15:0]   i_trig_seq      ,

    output [15:0]   o_icmp_len      ,
    output [7 :0]   o_icmp_data     ,
    output          o_icmp_last     ,
    output          o_icmp_valid    
);

/***************function**************/

/***************parameter*************/
localparam          P_LEN  = 40     ;
/***************port******************/             

/***************mechine***************/

/***************reg*******************/
reg                 ri_trig_reply   ;
reg  [15:0]         ri_trig_seq     ;
reg  [15:0]         ro_icmp_len     ;
reg  [7 :0]         ro_icmp_data    ;
reg                 ro_icmp_last    ;
reg                 ro_icmp_valid   ;
reg  [15:0]         r_icmp_cnt      ;
reg  [31:0]         r_icmp_check    ;
reg  [7 :0]         r_check_cnt     ;


/***************wire******************/

/***************component*************/

/***************assign****************/
assign o_icmp_len   = ro_icmp_len  ;
assign o_icmp_data  = ro_icmp_data ;
assign o_icmp_last  = ro_icmp_last ;
assign o_icmp_valid = ro_icmp_valid;
/***************always****************/
//序号值 和 信号 打一拍
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst) begin
        ri_trig_reply <= 'd0;
        ri_trig_seq   <= 'd0;
    end else begin
        ri_trig_reply <= i_trig_reply;
        ri_trig_seq   <= i_trig_seq;
    end
end

//r_check_cnt 在 ri_trig_reply拉高后 +1
//r_icmp_cnt 计数完,r_check_cnt清空
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_check_cnt <= 'd0;
    else if(r_icmp_cnt == P_LEN - 1)
        r_check_cnt <= 'd0;
    else if(r_check_cnt == 3)
        r_check_cnt <= r_check_cnt + 1;
    else if(ri_trig_reply | r_check_cnt)
        r_check_cnt <= r_check_cnt + 1;
    else 
        r_check_cnt <= r_check_cnt;
end

//ICMP的校验和  和IP层的首部校验和一样
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_icmp_check <= 'd0;
    else if(r_check_cnt == 0)
        r_icmp_check <= 16'h0001 + ri_trig_seq;
    else if(r_check_cnt == 1)
        r_icmp_check <= r_icmp_check[31:16] + r_icmp_check[15:0];
    else if(r_check_cnt == 2)
        r_icmp_check <= r_icmp_check[31:16] + r_icmp_check[15:0];
    else if(r_check_cnt == 3)
        r_icmp_check <= ~r_icmp_check;
    else 
        r_icmp_check <= r_icmp_check;
end

//校验完成后 开始组帧计数
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_icmp_cnt <= 'd0;
    else if(r_icmp_cnt == P_LEN - 1)
        r_icmp_cnt <= 'd0;
    else if(r_check_cnt == 3 || r_icmp_cnt)
        r_icmp_cnt <= r_icmp_cnt + 1;
    else 
        r_icmp_cnt <= r_icmp_cnt;
end
//ICMP的长度 输出
always@(posedge i_clk,posedge i_rst)
begin   
    if(i_rst)
        ro_icmp_len <= 'd0;
    else 
        ro_icmp_len <= P_LEN;
end
//校验完成输出 ICMP帧,使能拉高
always@(posedge i_clk,posedge i_rst)
begin   
    if(i_rst)
        ro_icmp_valid <= 'd0;
    else if(r_icmp_cnt == P_LEN - 1)
        ro_icmp_valid <= 'd0;
    else if(r_check_cnt == 3)
        ro_icmp_valid <= 'd1;
    else 
        ro_icmp_valid <= ro_icmp_valid;
end

//输出结束信号
always@(posedge i_clk,posedge i_rst)
begin   
    if(i_rst)
        ro_icmp_last <= 'd0;
    else if(r_icmp_cnt == P_LEN - 2)
        ro_icmp_last <= 'd1;
    else 
        ro_icmp_last <= 'd0;
end

//组帧
always@(posedge i_clk,posedge i_rst)
begin   
    if(i_rst)
        ro_icmp_data <= 'd0;
    else case(r_icmp_cnt)
        0           :ro_icmp_data <= 'd0;
        1           :ro_icmp_data <= 'd0;
        2           :ro_icmp_data <= r_icmp_check[15:8];
        3           :ro_icmp_data <= r_icmp_check[7 :0];
        4           :ro_icmp_data <= 8'h00;
        5           :ro_icmp_data <= 8'h01;
        6           :ro_icmp_data <= ri_trig_seq[15:8];
        7           :ro_icmp_data <= ri_trig_seq[7 :0];
        default     :ro_icmp_data <= 'd0;
    endcase
end

endmodule

6.1 ARP接收模块

module ARP_rx#(
    parameter       P_TARGET_IP = {8'd192,8'd168,8'd1,8'd1},
    parameter       P_SOURCE_MAC = {8'h00,8'h00,8'h00,8'h00,8'h00,8'h00},
    parameter       P_SOURCE_IP  = {8'd192,8'd168,8'd1,8'd2}
)(
    input           i_clk           ,
    input           i_rst           ,

    input   [31:0]  i_source_ip     ,
    input           i_s_ip_valid    ,

    /*--------info port--------*/
    output  [47:0]  o_target_mac    ,
    output  [31:0]  o_target_ip     ,
    output          o_target_valid  ,

    output          o_tirg_reply    ,

    /*--------MAC port--------*/
    input   [7 :0]  i_mac_data      ,
    input           i_mac_last      ,
    input           i_mac_valid     
);

/***************function**************/

/***************parameter*************/

/***************port******************/             

/***************mechine***************/

/***************reg*******************/
reg  [47:0]         ro_target_mac   ;
reg  [31:0]         ro_target_ip    ;
reg                 ro_target_valid ;
reg  [7 :0]         ri_mac_data     ;
reg  [7 :0]         ri_mac_data_1d  ;
reg                 ri_mac_last     ;
reg                 ri_mac_valid    ;
reg  [15:0]         r_mac_cnt       ;
reg  [15:0]         r_arp_op        ;
reg                 ro_tirg_reply   ;
reg  [31:0]         ri_source_ip    ; 

/***************wire******************/

/***************component*************/

/***************assign****************/
assign o_target_mac = ro_target_mac ;
assign o_target_ip  = ro_target_ip  ;
assign o_tirg_reply = ro_tirg_reply ;
assign o_target_valid = ro_target_valid;

/***************always****************/
//打拍
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst) begin
        ri_mac_data  <= 'd0;
        ri_mac_last  <= 'd0;
        ri_mac_valid <= 'd0;
        ri_mac_data_1d <= 'd0;
    end else begin   
        ri_mac_data  <= i_mac_data ;
        ri_mac_last  <= i_mac_last ;
        ri_mac_valid <= i_mac_valid;
        ri_mac_data_1d <= ri_mac_data;
    end
end

//源ip 锁存
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        ri_source_ip <= P_SOURCE_IP;
    else if(i_s_ip_valid)
        ri_source_ip <= i_source_ip;
    else 
        ri_source_ip <= ri_source_ip;
end

//mac计数器
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_mac_cnt <= 'd0;
    else if(ri_mac_valid)   
        r_mac_cnt <= r_mac_cnt + 1;
    else     
        r_mac_cnt <= 'd0;
end

//获得ARP的操作类型
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_arp_op <= 'd0;
    else if(r_mac_cnt >= 6 && r_mac_cnt <= 7)
        r_arp_op <= {r_arp_op[7 :0],ri_mac_data};
    else     
        r_arp_op <= r_arp_op;
end

//获得目的mac
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        ro_target_mac <= 'd0;
    else if(r_mac_cnt >= 8 && r_mac_cnt <= 13 && (r_arp_op == 1 || r_arp_op == 2))
        ro_target_mac <= {ro_target_mac[39:0],ri_mac_data};
    else        
        ro_target_mac <= ro_target_mac;
end

//获得目的ip
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        ro_target_ip <= 'd0;
    else if(r_mac_cnt >= 14 && r_mac_cnt <= 17 && (r_arp_op == 1 || r_arp_op == 2))
        ro_target_ip <= {ro_target_ip[23:0],ri_mac_data};
    else     
        ro_target_ip <= ro_target_ip;
end

//计数到17 拉高有效信号
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)    
        ro_target_valid <= 'd0;
    else if(r_mac_cnt == 17)   
        ro_target_valid <= 'd1;
    else        
        ro_target_valid <= 'd0;
end

//计数到18 类型为1 请求   
//回复信号触发信号 拉高
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        ro_tirg_reply <= 'd0;
    else if(r_mac_cnt == 18 && r_arp_op == 1)
        ro_tirg_reply <= 'd1;
    else 
        ro_tirg_reply <= 'd0;
end

endmodule

6.2 ARP发送模块

module ARP_tx#(
    parameter       P_TARGET_IP = {8'd192,8'd168,8'd1,8'd1},
    parameter       P_SOURCE_MAC = {8'h00,8'h00,8'h00,8'h00,8'h00,8'h00},
    parameter       P_SOURCE_IP  = {8'd192,8'd168,8'd1,8'd2}
)(
    input           i_clk           ,
    input           i_rst           ,

    input   [31:0]  i_target_ip     ,
    input           i_target_valid  ,
    input   [47:0]  i_source_mac    ,
    input           i_s_mac_valid   ,
    input   [31:0]  i_source_ip     ,
    input           i_s_ip_valid    ,

    input   [47:0]  i_reply_mac     ,

    output  [31:0]  o_seek_ip       ,
    output          o_seek_valid    ,

    input           i_trig_reply    ,
    input           i_active_send   ,

    output  [7 :0]  o_mac_data      ,
    output          o_mac_last      ,
    output          o_mac_valid     
);

/***************function**************/

/***************parameter*************/
localparam          P_LEN    = 46   ;

/***************port******************/             

/***************mechine***************/

/***************reg*******************/
reg  [31:0]         r_target_ip     ;
reg                 ri_trig_reply   ;
reg                 ri_active_send  ;
reg  [7 :0]         ro_mac_data     ;
reg                 ro_mac_last     ;
reg                 ro_mac_valid    ;
reg  [15:0]         r_mac_cnt       ;
reg  [15:0]         r_arp_op        ;
reg  [47:0]         ri_source_mac   ; 
reg  [31:0]         ri_source_ip    ; 
reg  [31:0]         ro_seek_ip      ;
reg                 ro_seek_valid   ;
reg  [47:0]         ri_reply_mac    ;
reg  [15:0]         r_arp_cnt       ;

/***************wire******************/
wire                w_act           ;

/***************component*************/

/***************assign****************/
assign o_mac_data  = ro_mac_data    ;
assign o_mac_last  = ro_mac_last    ;
assign o_mac_valid = ro_mac_valid   ;
assign o_seek_ip    = ro_seek_ip    ;
assign o_seek_valid = ro_seek_valid ;
assign w_act       = r_arp_cnt == 10;

/***************always****************/
   
//主动ARP和被动ARP 触发有效
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst) 
        ro_seek_valid <= 'd0;
    else if(i_trig_reply | i_active_send)
        ro_seek_valid <= 'd1;
    else            
        ro_seek_valid <= 'd0;
end

//输出 源ip
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        ro_seek_ip <= 'd0;
    else 
        ro_seek_ip <= ri_source_ip;
end

//输入目的有效 获得目的ip
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_target_ip <= P_TARGET_IP;
    else if(i_target_valid)
        r_target_ip <= i_target_ip;
    else 
        r_target_ip <= r_target_ip;
end

//输入mac有效,获得源mac
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        ri_source_mac <= P_SOURCE_MAC;
    else if(i_s_mac_valid)
        ri_source_mac <= i_source_mac;
    else 
        ri_source_mac <= ri_source_mac;
end

//输入ip有效,获得源ip 
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        ri_source_ip <= P_SOURCE_IP;
    else if(i_s_ip_valid)
        ri_source_ip <= i_source_ip;
    else 
        ri_source_ip <= ri_source_ip;
end

// 被动触发 和主动触发信号打拍
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst) begin
        ri_trig_reply  <= 'd0;
        ri_active_send <= 'd0;
    end else begin
        ri_trig_reply  <= i_trig_reply ;
        ri_active_send <= i_active_send | w_act;
    end 
end

//r_arp_cnt计数器  0 到 11 
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_arp_cnt <= 'd0;
    else if(r_arp_cnt < 11)
        r_arp_cnt <= r_arp_cnt + 1;
    else 
        r_arp_cnt <= r_arp_cnt;
end

//打拍后的触发信号,控制开始mac帧计数
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_mac_cnt <= 'd0;
    else if(r_mac_cnt == P_LEN - 1)
        r_mac_cnt <= 'd0;
    else if(ri_trig_reply || ri_active_send  || r_mac_cnt)   
        r_mac_cnt <= r_mac_cnt + 1;
    else 
        r_mac_cnt <= r_mac_cnt;
end

//打拍后的触发信号,控制回复类型值
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_arp_op <= 'd0;
    else if(ri_trig_reply)
        r_arp_op <= 'd2;
    else if(ri_active_send)
        r_arp_op <= 'd1;
    else 
        r_arp_op <= r_arp_op;
end

//得到mac帧 用于回复
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        ri_reply_mac <= 'd0;
    else 
        ri_reply_mac <= i_reply_mac;
end     

//组帧输出
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        ro_mac_data <= 'd0;
    else case(r_mac_cnt)
        0           :ro_mac_data <= 'd0;
        1           :ro_mac_data <= 'd1;
        2           :ro_mac_data <= 8'h08;
        3           :ro_mac_data <= 8'h00;
        4           :ro_mac_data <= 'd6;
        5           :ro_mac_data <= 'd4;
        6           :ro_mac_data <= r_arp_op[15:8];
        7           :ro_mac_data <= r_arp_op[7 :0];
        8           :ro_mac_data <= ri_source_mac[47:40];
        9           :ro_mac_data <= ri_source_mac[39:32];
        10          :ro_mac_data <= ri_source_mac[31:24];
        11          :ro_mac_data <= ri_source_mac[23:16];
        12          :ro_mac_data <= ri_source_mac[15: 8];
        13          :ro_mac_data <= ri_source_mac[7 : 0];
        14          :ro_mac_data <= ri_source_ip[31:24];
        15          :ro_mac_data <= ri_source_ip[23:16];
        16          :ro_mac_data <= ri_source_ip[15: 8];
        17          :ro_mac_data <= ri_source_ip[7 : 0];
        18          :ro_mac_data <= r_arp_op == 2 ? ri_reply_mac[47:40] : 8'h00;
        19          :ro_mac_data <= r_arp_op == 2 ? ri_reply_mac[39:32] : 8'h00;
        20          :ro_mac_data <= r_arp_op == 2 ? ri_reply_mac[31:24] : 8'h00; 
        21          :ro_mac_data <= r_arp_op == 2 ? ri_reply_mac[23:16] : 8'h00;
        22          :ro_mac_data <= r_arp_op == 2 ? ri_reply_mac[15: 8] : 8'h00;
        23          :ro_mac_data <= r_arp_op == 2 ? ri_reply_mac[7 : 0] : 8'h00;
        24          :ro_mac_data <= r_target_ip[31:24];
        25          :ro_mac_data <= r_target_ip[23:16];
        26          :ro_mac_data <= r_target_ip[15: 8];
        27          :ro_mac_data <= r_target_ip[7 : 0];
        default     :ro_mac_data <= 'd0;
    endcase
end

//到长度就拉低有效信号
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        ro_mac_valid <= 'd0;
    else if(r_mac_cnt == P_LEN - 1)
        ro_mac_valid <= 'd0;
    else if(ri_trig_reply || ri_active_send )
        ro_mac_valid <= 'd1;
    else 
        ro_mac_valid <= ro_mac_valid;
end 

//产生last信号
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        ro_mac_last <= 'd0;
    else if(r_mac_cnt == P_LEN - 2)
        ro_mac_last <= 'd1;
    else 
        ro_mac_last <= 'd0;
end

endmodule

6.3 ARP表模块

module ARP_Table(
    input               i_clk           ,
    input               i_rst           ,

    input  [31:0]       i_seek_ip       ,
    input               i_seek_valid    ,

    input  [31:0]       i_updata_ip     ,
    input  [47:0]       i_updata_mac    ,
    input               i_updata_valid  ,

    output [47:0]       o_active_mac    ,
    output              o_active_valid  
);  

/***************function**************/

/***************parameter*************/
localparam              P_ST_IDLE       =   0   ,
                        P_ST_SEEK       =   1   ,
                        P_ST_UPDATA_S   =   2   ,
                        P_ST_UPDATA     =   3   ,
                        P_ST_MAC        =   4   ;

/***************port******************/             

/***************mechine***************/
reg  [7 :0]             r_st_current    ;
reg  [7 :0]             r_st_next       ;

/***************reg*******************/
reg  [31:0]             r_seek_ip       ;
reg  [31:0]             r_updata_ip     ;
reg  [47:0]             r_updata_mac    ;
reg  [47:0]             ro_active_mac   ;
reg                     ro_active_valid ;
reg                     ri_seek_valid   ;
reg                     ri_updata_valid ;
reg                     r_ram_ip_en     ;
reg                     r_ram_ip_we     ;
reg  [2 :0]             r_ram_ip_addr   ;
reg                     r_ram_ip_dv     ;
reg                     r_ram_mac_en    ;
reg                     r_ram_mac_we    ;
reg  [2 :0]             r_ram_mac_addr  ;
reg                     r_ram_mac_dv    ;
reg                     r_ip_access     ;
reg  [2 :0]             r_access_addr   ;
reg                     r_ram_ip_end    ;
reg                     r_ram_ip_end_1d ;
reg                     r_updata_acc    ;
reg  [2 :0]             r_up_data_addr  ;

/***************wire******************/
wire [31:0]             w_ram_ip_dout   ;
wire [47:0]             w_ram_mac_dout  ;
wire                    w_seek_v_pos    ;
wire                    w_seek_v_neg    ;
wire                    w_updata_v_pos  ;
wire                    w_updata_v_neg  ;
wire                    r_ram_ip_end_neg;


/***************component*************/
RAM_IP RAM_IP_U0 (
  .clka     (i_clk          ),
  .ena      (r_ram_ip_en    ),
  .wea      (r_ram_ip_we    ),
  .addra    (r_ram_ip_addr  ),
  .dina     (r_updata_ip    ),
  .douta    (w_ram_ip_dout  ) 
);

RAM_MAC RAM_MAC_U0 (
  .clka     (i_clk          ), 
  .ena      (r_ram_mac_en   ), 
  .wea      (r_ram_mac_we   ), 
  .addra    (r_ram_mac_addr ), 
  .dina     (r_updata_mac   ), 
  .douta    (w_ram_mac_dout )  
);
/***************assign****************/
assign o_active_mac   = ro_active_mac   ;
assign o_active_valid = ro_active_valid ;
assign w_seek_v_pos   = i_seek_valid & !ri_seek_valid;
assign w_seek_v_neg   = !i_seek_valid & ri_seek_valid;
assign w_updata_v_pos = i_updata_valid & !ri_updata_valid;
assign w_updata_v_neg = !i_updata_valid & ri_updata_valid;
assign r_ram_ip_end_neg = r_ram_ip_end & !r_ram_ip_end_1d;

/***************always****************/
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_st_current <= P_ST_IDLE;
    else 
        r_st_current <= r_st_next;
end

always@(*)
begin
    case(r_st_current)
        P_ST_IDLE       :r_st_next = w_seek_v_pos   ? P_ST_SEEK     : 
                                     i_updata_valid ? P_ST_UPDATA_S : P_ST_IDLE;
        P_ST_SEEK       :r_st_next = r_ip_access || (r_ram_ip_end_neg && !r_ip_access)? P_ST_MAC    : P_ST_SEEK;
        P_ST_UPDATA_S   :r_st_next = r_updata_acc ? P_ST_IDLE : 
                                     (r_ram_ip_end_neg && !r_updata_acc) ? P_ST_UPDATA : P_ST_UPDATA_S;
        P_ST_UPDATA     :r_st_next = P_ST_IDLE;
        P_ST_MAC        :r_st_next = P_ST_IDLE;
        default         :r_st_next = P_ST_IDLE;
    endcase 
end

always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_seek_ip <= 'd0;
    else if(i_seek_valid)
        r_seek_ip <= i_seek_ip;
    else 
        r_seek_ip <= r_seek_ip;
end

always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst) begin
        r_updata_ip  <= 'd0;
        r_updata_mac <= 'd0;
    end else if(i_updata_valid) begin     
        r_updata_ip  <= i_updata_ip ;
        r_updata_mac <= i_updata_mac;
    end else begin
        r_updata_ip  <= r_updata_ip ;
        r_updata_mac <= r_updata_mac;
    end 
end


always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst) begin
        ri_seek_valid   <= 'd0;
        ri_updata_valid <= 'd0;
    end else begin
        ri_seek_valid   <= i_seek_valid  ;
        ri_updata_valid <= i_updata_valid;
    end 
end

always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst) begin  
        r_ram_ip_en   <= 'd0;
        r_ram_ip_we   <= 'd0;
        r_ram_ip_addr <= 'd0;   
    end else if(r_st_current == P_ST_SEEK && !r_ram_ip_end) begin
        r_ram_ip_en   <= 'd1;
        r_ram_ip_we   <= 'd0;
        if(r_ram_ip_en) r_ram_ip_addr <= r_ram_ip_addr + 1;
        else r_ram_ip_addr <= 'd0;

    end else if(r_st_current == P_ST_UPDATA_S && !r_ram_ip_end) begin
        r_ram_ip_en   <= 'd1;
        r_ram_ip_we   <= 'd0;
        if(r_ram_ip_en) r_ram_ip_addr <= r_ram_ip_addr + 1;
        else r_ram_ip_addr <= 'd0;
        
    end else if(r_st_current == P_ST_UPDATA) begin
        r_ram_ip_en   <= 'd1;
        r_ram_ip_we   <= 'd1;
        r_ram_ip_addr <= r_up_data_addr;
    end else begin
        r_ram_ip_en   <= 'd0;
        r_ram_ip_we   <= 'd0;
        r_ram_ip_addr <= 'd0;
    end 
end



always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst) begin  
        r_ram_mac_en   <= 'd0;
        r_ram_mac_we   <= 'd0;
        r_ram_mac_addr <= 'd0;   
    end else if(r_st_current == P_ST_UPDATA_S && !r_ram_ip_end) begin
        r_ram_mac_en   <= 'd1;
        r_ram_mac_we   <= 'd0;
        r_ram_mac_addr <= r_ram_mac_addr + 1;
    end else if(r_st_current == P_ST_UPDATA) begin
        r_ram_mac_en   <= 'd1;
        r_ram_mac_we   <= 'd1;
        r_ram_mac_addr <= r_up_data_addr;
    end else if(r_ram_ip_dv && w_ram_ip_dout == r_seek_ip) begin
        r_ram_mac_en   <= 'd1;
        r_ram_mac_we   <= 'd0;
        r_ram_mac_addr <= r_access_addr;
    end else begin
        r_ram_mac_en   <= 'd0;
        r_ram_mac_we   <= 'd0;
        r_ram_mac_addr <= 'd0;
    end 
end

always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_ram_ip_end <= 'd0;
    else if(r_st_current == P_ST_IDLE)
        r_ram_ip_end <= 'd0;
    else if(r_st_current == P_ST_SEEK && r_ram_ip_addr == 7)
        r_ram_ip_end <= 'd1;
    else if(r_st_current == P_ST_UPDATA_S && r_ram_ip_addr == 7)
        r_ram_ip_end <= 'd1;
    else 
        r_ram_ip_end <= r_ram_ip_end;
end

always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_ram_ip_end_1d <= 'd0;
    else
        r_ram_ip_end_1d <= r_ram_ip_end;
end

always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_ram_ip_dv <= 'd0;
    else if(r_ram_ip_en && !r_ram_ip_we && !r_ip_access)
        r_ram_ip_dv <= 'd1;
    else 
        r_ram_ip_dv <= 'd0;
end

always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_ip_access <= 'd0;
    else if(r_st_current == P_ST_IDLE)
        r_ip_access <= 'd0;
    else if(r_ram_ip_dv && w_ram_ip_dout == r_seek_ip)
        r_ip_access <= 'd1;
    else 
        r_ip_access <= r_ip_access;
end

always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_access_addr <= 'd0;
    else if(r_st_current == P_ST_IDLE)
        r_access_addr <= 'd0;
    else if(r_ram_ip_dv && !r_ip_access)
        r_access_addr <= r_access_addr + 1;
    else 
        r_access_addr <= r_access_addr;
end

always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_updata_acc <= 'd0;
    else if(r_ram_ip_dv && w_ram_ip_dout == r_updata_ip && w_ram_mac_dout == r_updata_mac)
        r_updata_acc <= 'd1;
    else 
        r_updata_acc <= 'd0;
end


always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_up_data_addr <= 'd0;
    else if(r_st_current == P_ST_UPDATA)
        r_up_data_addr <= r_up_data_addr + 1;
    else 
        r_up_data_addr <= r_up_data_addr;
end

  

always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        ro_active_mac <= 48'd0;
    else if(r_st_current == P_ST_MAC && r_ip_access)
        ro_active_mac <= w_ram_mac_dout;
    else        
        ro_active_mac <= 48'hffffffffffff;
end 

always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        ro_active_valid <= 'd0;
    else if(r_st_current == P_ST_MAC)
        ro_active_valid <= 'd1;
    else 
        ro_active_valid <= 'd0;
end
endmodule

7 CRC数据对比模块

要双端口ram读写缓存帧的数据和FIFO配合存储帧长度和类型

module CRC_Data_Pro(
    input               i_clk           ,
    input               i_rst           ,

    input  [15:0]       i_per_type      ,
    input  [7 :0]       i_per_data      ,
    input               i_per_last      ,
    input               i_per_valid     ,
    input               i_per_crc_error ,
    input               i_per_crc_valid ,

    output [15:0]       o_post_type     ,
    output [7 :0]       o_post_data     ,
    output              o_post_last     ,
    output              o_post_valid 
);

/***************function**************/

/***************parameter*************/
localparam              P_FRAME_GAP =   12  ;

/***************port******************/             

/***************mechine***************/

/***************reg*******************/
reg  [15:0]             ri_per_type         ;
reg  [7 :0]             ri_per_data         ;
reg                     ri_per_last         ;
reg                     ri_per_valid        ;
reg                     ri_per_valid_1d     ;
reg                     ri_per_crc_error    ;
reg                     ri_per_crc_valid    ;
reg  [7 :0]             ro_post_data        ;
reg                     ro_post_last        ;
reg                     ro_post_valid       ;
reg                     r_ram_en_A          ;
reg                     r_ram_we_A          ;
reg  [11:0]             r_ram_addr_A        ;
reg  [7 :0]             r_ram_din_A         ;
reg                     r_ram_en_B          ;
reg                     r_ram_en_B_1d       ;
reg                     r_ram_we_B          ;
reg  [11:0]             r_ram_addr_B        ;
reg  [10:0]             r_data_len          ;
reg  [10:0]             r_data_len_o        ;
reg                     r_fifo_rd_en        ;
reg                     r_fifo_rd_en_1d     ;
reg                     r_fifo_wr_en        ;
reg                     r_out_run           ;
reg                     r_out_run_1d        ;
reg  [10:0]             r_fifo_dout         ;
reg  [15:0]             r_gap_cnt           ;
reg  [15:0]             ro_post_type        ;
reg                     ri_per_last_1d      ;

/***************wire******************/
wire [7 :0]             w_ram_dout_B        ;
wire [10:0]             w_fifo_dout         ;
wire                    w_fifo_empty        ;
wire                    w_fifo_full         ;
wire [15:0]             w_fifo_type         ;

/***************component*************/
RAM_8x1500_TrueDual RAM_8x1500_TrueDual_u0 (//修改为8X3000 
  .clka                 (i_clk          ),
  .ena                  (r_ram_en_A     ),
  .wea                  (r_ram_we_A     ),
  .addra                (r_ram_addr_A   ),
  .dina                 (r_ram_din_A    ),
  .douta                (),

  .clkb                 (i_clk          ),
  .enb                  (r_ram_en_B     ),
  .web                  (r_ram_we_B     ),
  .addrb                (r_ram_addr_B   ),
  .dinb                 (0              ),
  .doutb                (w_ram_dout_B   ) 
);

FIFO_11X64 FIFO_11X64_U0 (
  .clk                  (i_clk          ),
  .din                  (r_data_len     ),
  .wr_en                (r_fifo_wr_en   ),
  .rd_en                (r_fifo_rd_en   ),
  .dout                 (w_fifo_dout    ),
  .full                 (w_fifo_full    ),
  .empty                (w_fifo_empty   ) 
);

FIFO_16X64 FIFO_16X64_U1 (
  .clk                  (i_clk          ),
  .din                  (ri_per_type     ),
  .wr_en                (r_fifo_wr_en   ),
  .rd_en                (r_fifo_rd_en   ),
  .dout                 (w_fifo_type    ),
  .full                 (),
  .empty                () 
);

/***************assign****************/
assign o_post_data  = ro_post_data ;
assign o_post_last  = ro_post_last ;
assign o_post_valid = ro_post_valid;
assign o_post_type  = ro_post_type;

/***************always****************/
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst) begin
        ri_per_data      <= 'd0;
        ri_per_last      <= 'd0;
        ri_per_valid     <= 'd0;
        ri_per_type      <= 'd0;
        ri_per_crc_error <= 'd0;
        ri_per_crc_valid <= 'd0;
    end else begin
        ri_per_data      <= i_per_data     ;
        ri_per_last      <= i_per_last     ;
        ri_per_valid     <= i_per_valid    ;
        ri_per_type      <= i_per_type     ;
        ri_per_crc_error <= i_per_crc_error;
        ri_per_crc_valid <= i_per_crc_valid;
    end 
end

always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst) begin
        r_ram_en_A   <= 'd0;   
        r_ram_we_A   <= 'd0;   
        r_ram_din_A  <= 'd0;
    end else if(ri_per_valid) begin
        r_ram_en_A   <= 'd1;
        r_ram_we_A   <= 'd1;
        r_ram_din_A  <= ri_per_data;
    end else begin
        r_ram_en_A   <= 'd0;
        r_ram_we_A   <= 'd0;
        r_ram_din_A  <= 'd0;
    end
end 

always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        ri_per_valid_1d <= 'd0;
    else
        ri_per_valid_1d <= ri_per_valid;
end 

always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_ram_addr_A <= 'd0;
    else if(ri_per_crc_valid && ri_per_crc_error)
        r_ram_addr_A <= r_ram_addr_A - r_data_len;
    else if(r_ram_addr_A == 2999)
        r_ram_addr_A <= 'd0;
    else if(ri_per_valid && !ri_per_valid_1d)
        r_ram_addr_A <= r_ram_addr_A;
    else if(ri_per_valid | ri_per_valid_1d)
        r_ram_addr_A <= r_ram_addr_A + 1;
    else 
        r_ram_addr_A <= r_ram_addr_A;
end

always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        ri_per_last_1d <= 'd0;
    else 
        ri_per_last_1d <= ri_per_last;
end

// always@(posedge i_clk,posedge i_rst)
// begin
//     if(i_rst)
//         r_data_len <= 'd0;
//     else if(ri_per_last_1d)
//         r_data_len <= r_ram_addr_A;
//     else 
//         r_data_len <= r_data_len;
// end

always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_data_len <= 'd0;
    else if(r_fifo_wr_en)
        r_data_len <= 'd0;
    else if(ri_per_valid)
        r_data_len <= r_data_len + 1;
    else
        r_data_len <= r_data_len;
end

always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_fifo_wr_en <= 'd0;
    else if(ri_per_crc_valid && !ri_per_crc_error && !r_fifo_wr_en)
        r_fifo_wr_en <= 'd1;
    else 
        r_fifo_wr_en <= 'd0;
end

always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_fifo_rd_en <= 'd0;
    else if(!w_fifo_empty && !r_out_run && !r_fifo_rd_en && r_gap_cnt == P_FRAME_GAP - 4)
        r_fifo_rd_en <= 'd1;
    else
        r_fifo_rd_en <= 'd0; 
end 

always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_fifo_rd_en_1d <= 'd0;
    else 
        r_fifo_rd_en_1d <= r_fifo_rd_en;
end

always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_fifo_dout <= 'd0;
    else if(r_fifo_rd_en_1d)   
        r_fifo_dout <= w_fifo_dout;
    else 
        r_fifo_dout <= r_fifo_dout;
end

always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_out_run <= 'd0;
    else if(r_data_len_o == r_fifo_dout - 1)
        r_out_run <= 'd0;
    else if(!r_fifo_rd_en && r_fifo_rd_en_1d)
        r_out_run <= 'd1;
    else 
        r_out_run <= r_out_run;
end

always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_data_len_o <= 'd0;
    else if(r_data_len_o == r_fifo_dout - 1)
        r_data_len_o <= 'd0;
    else  if(r_out_run)
        r_data_len_o <= r_data_len_o + 1;
    else  
        r_data_len_o <= r_data_len_o;
end

always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_out_run_1d <= 'd0;
    else
        r_out_run_1d <= r_out_run;
end

always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst) begin
        r_ram_en_B   <= 'd0;   
        r_ram_we_B   <= 'd0;   
    end else if(r_out_run && !r_out_run_1d) begin
        r_ram_en_B   <= 'd1;   
        r_ram_we_B   <= 'd0;   
        
    end else if(r_out_run) begin
        r_ram_en_B   <= 'd1;   
        r_ram_we_B   <= 'd0;   
        
    end else begin
        r_ram_en_B   <= 'd0;   
        r_ram_we_B   <= 'd0;   
    end 
end 

always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_ram_addr_B <= 'd0;
    else if(r_ram_addr_B == 2999)   
        r_ram_addr_B <= 'd0;
    else if(r_out_run && !r_out_run_1d)
        r_ram_addr_B <= r_ram_addr_B;
    else if(r_out_run | r_out_run_1d)
        r_ram_addr_B <= r_ram_addr_B + 1;
    else 
        r_ram_addr_B <= r_ram_addr_B;
end

always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        ro_post_data <= 'd0;
    else if(r_ram_en_B_1d)
        ro_post_data <= w_ram_dout_B;
    else 
        ro_post_data <= 'd0;
end

always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        ro_post_type <= 'd0;
    else if(r_fifo_rd_en_1d)
        ro_post_type <= w_fifo_type;
    else 
        ro_post_type <= ro_post_type;
end

always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_ram_en_B_1d <= 'd0;
    else 
        r_ram_en_B_1d <= r_ram_en_B;
end

always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        ro_post_valid <= 'd0;
    else 
        ro_post_valid <= r_ram_en_B_1d;
end

always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        ro_post_last <= 'd0;
    else if(!r_ram_en_B && r_ram_en_B_1d)
        ro_post_last <= 'd1;
    else    
        ro_post_last <= 'd0;
end

always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_gap_cnt <= 'd1;
    else if(r_fifo_rd_en)
        r_gap_cnt <= 'd0;
    else if(r_gap_cnt == P_FRAME_GAP - 4)
        r_gap_cnt <= r_gap_cnt;
    else if(ro_post_last | r_gap_cnt)
        r_gap_cnt <= r_gap_cnt + 1;
    else 
        r_gap_cnt <= r_gap_cnt;
end

endmodule

8 MAC下ARP和IP数据分流模块

类型是0800就是IP 0806就是ARP,进行分流操作

module mac_arp_ip_mux(
    input               i_clk           ,
    input               i_rst           ,

    input  [15:0]       i_type          ,
    input  [7 :0]       i_data          ,
    input               i_last          ,
    input               i_valid         ,

    output [7 :0]       o_ip_data       ,
    output              o_ip_last       ,
    output              o_ip_valid      ,

    output [7 :0]       o_arp_data      ,
    output              o_arp_last      ,
    output              o_arp_valid     
);

reg  [7 :0]             ro_ip_data      ;
reg                     ro_ip_last      ;
reg                     ro_ip_valid     ;
reg  [7 :0]             ro_arp_data     ;
reg                     ro_arp_last     ;
reg                     ro_arp_valid    ;

assign o_ip_data   = ro_ip_data          ;
assign o_ip_last   = ro_ip_last          ;
assign o_ip_valid  = ro_ip_valid         ;
assign o_arp_data  = ro_arp_data         ;
assign o_arp_last  = ro_arp_last         ;
assign o_arp_valid = ro_arp_valid        ;

always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst) begin
        ro_ip_data  <= 'd0;
        ro_ip_last  <= 'd0;
        ro_ip_valid <= 'd0;
    end else if(i_type == 16'h0800) begin
        ro_ip_data  <= i_data ;
        ro_ip_last  <= i_last ;
        ro_ip_valid <= i_valid;
    end else begin
        ro_ip_data  <= 'd0;
        ro_ip_last  <= 'd0;
        ro_ip_valid <= 'd0;
    end 
end

always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst) begin
        ro_arp_data  <= 'd0;
        ro_arp_last  <= 'd0;
        ro_arp_valid <= 'd0;
    end else if(i_type == 16'h0806) begin
        ro_arp_data   <= i_data ;
        ro_arp_last   <= i_last ;
        ro_arp_valid <= i_valid;
    end else begin
        ro_arp_data  <= 'd0;
        ro_arp_last  <= 'd0;
        ro_arp_valid <= 'd0;
    end 
end

endmodule

9 数据流仲裁模块

两个数据流都加个FIFO,以帧为单位,先输出A,A输出完成后再输出B。还要进行流控:要切换通道输出时,要先把现在这个通道的FIFO数据输出完,才能来新通道的输入,保证多次操作之后FIFO不会溢出。

module Data_2to1(
    input               i_clk               ,
    input               i_rst               ,

    input  [15:0]       i_type_A            ,
    input  [15:0]       i_len_A             ,
    input  [7 :0]       i_data_A            ,
    input               i_last_A            ,
    input               i_valid_A           ,
    output              o_next_frame_stop   ,

    input  [15:0]       i_type_B            ,
    input  [15:0]       i_len_B             ,
    input  [7 :0]       i_data_B            ,
    input               i_last_B            ,
    input               i_valid_B           ,

    output [15:0]       o_type              ,
    output [15:0]       o_len               ,
    output [7 :0]       o_data              ,
    output              o_last              ,
    output              o_valid         
);

/***************function**************/

/***************parameter*************/

/***************port******************/             

/***************mechine***************/

/***************reg*******************/
reg [15:0]              ri_type_A       ;
reg [15:0]              ri_len_A        ;
reg [7 :0]              ri_data_A       ;
reg                     ri_last_A       ;
reg                     ri_valid_A      ;
reg                     ri_valid_A_1d   ;
reg [15:0]              ri_type_B       ;
reg [15:0]              ri_len_B        ;
reg [7 :0]              ri_data_B       ;
reg                     ri_last_B       ;
reg                     ri_valid_B      ;
reg                     ri_valid_B_1d   ;
reg  [7 :0]             ro_data         ;
reg                     ro_last         ;
reg                     ro_valid        ;
reg                     r_fifo_A_rden   ;
reg                     r_fifo_B_rden   ;
reg                     r_fifo_A_rden_1d;
reg                     r_fifo_B_rden_1d;
reg  [1 :0]             r_fifo_rd       ;
reg  [1:0]              r_arbiter       ;
reg  [15:0]             r_rd_cnt        ; 
reg                     r_rd_en         ;
reg                     ro_next_frame_stop  ;
reg  [15:0]             ro_type         ;
reg  [15:0]             ro_len          ;
reg                     r_rden_A_pos    ;
reg                     r_rden_B_pos    ;
reg  [7 :0]             r_cnt           ;

/***************wire******************/
wire [7 :0]             w_fifo_A_dout   ;
wire                    w_fifo_A_full   ;
wire                    w_fifo_A_empty  ;
wire [7 :0]             w_fifo_B_dout   ;
wire                    w_fifo_B_full   ;
wire                    w_fifo_B_empty  ;
wire                    w_rd_en         ;
wire                    w_valid_A_pos   ;
wire                    w_valid_B_pos   ;
wire                    w_rden_A_pos    ;
wire                    w_rden_B_pos    ;
wire [31:0]             w_A_type_len    ;
wire [31:0]             w_B_type_len    ;

/***************component*************/
FIFO_8X256 FIFO_8X256_U0_A (
  .clk              (i_clk          ),   
  .din              (ri_data_A      ),   
  .wr_en            (ri_valid_A     ), 
  .rd_en            (r_fifo_A_rden  ), 
  .dout             (w_fifo_A_dout  ),  
  .full             (w_fifo_A_full  ),  
  .empty            (w_fifo_A_empty )  
);

FIFO_32X16 FIFO_32X16_A (
  .clk              (i_clk                  ),  
  .din              ({ri_type_A,ri_len_A}   ),  
  .wr_en            (w_valid_A_pos          ),  
  .rd_en            (w_rden_A_pos           ),  
  .dout             (w_A_type_len           ),  
  .full             (),
  .empty            () 
);

FIFO_8X256 FIFO_8X256_U0_B (
  .clk              (i_clk          ),   
  .din              (ri_data_B      ),   
  .wr_en            (ri_valid_B     ), 
  .rd_en            (r_fifo_B_rden  ), 
  .dout             (w_fifo_B_dout  ),  
  .full             (w_fifo_B_full  ),  
  .empty            (w_fifo_B_empty )  
);

FIFO_32X16 FIFO_32X16_B (
  .clk              (i_clk                  ),
  .din              ({ri_type_B,ri_len_B}   ),
  .wr_en            (w_valid_B_pos          ),
  .rd_en            (w_rden_B_pos           ),
  .dout             (w_B_type_len           ),
  .full             (), 
  .empty            ()  
);

/***************assign****************/
assign o_data  = ro_data    ;
assign o_last  = ro_last    ;
assign o_valid = ro_valid   ;
assign w_rd_en = r_fifo_A_rden | r_fifo_B_rden;
assign o_next_frame_stop = ro_next_frame_stop;
assign w_valid_A_pos = ri_valid_A & !ri_valid_A_1d;
assign w_valid_B_pos = ri_valid_B & !ri_valid_B_1d;
assign w_rden_A_pos = r_fifo_A_rden & !r_fifo_A_rden_1d;
assign w_rden_B_pos = r_fifo_B_rden & !r_fifo_B_rden_1d;
assign o_type       = ro_type;
assign o_len        = ro_len ;

/***************always****************/
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst) begin
        ri_type_A  <= 'd0;
        ri_len_A   <= 'd0;
        ri_data_A  <= 'd0;
        ri_last_A  <= 'd0;
        ri_valid_A <= 'd0;
        ri_type_B  <= 'd0;
        ri_len_B   <= 'd0;
        ri_data_B  <= 'd0;
        ri_last_B  <= 'd0;
        ri_valid_B <= 'd0;
        ri_valid_A_1d <= 'd0;
        ri_valid_B_1d <= 'd0;
    end else begin
        ri_type_A  <= i_type_A  ;
        ri_len_A   <= i_len_A   ;
        ri_data_A  <= i_data_A  ;
        ri_last_A  <= i_last_A  ;
        ri_valid_A <= i_valid_A ;
        ri_type_B  <= i_type_B  ;
        ri_len_B   <= i_len_B   ;
        ri_data_B  <= i_data_B  ;
        ri_last_B  <= i_last_B  ;
        ri_valid_B <= i_valid_B ;
        ri_valid_A_1d <= ri_valid_A;
        ri_valid_B_1d <= ri_valid_B;
    end
end

always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst) begin
        r_fifo_A_rden_1d <= 'd0 ;
        r_fifo_B_rden_1d <= 'd0 ;
    end else begin
        r_fifo_A_rden_1d <= r_fifo_A_rden;
        r_fifo_B_rden_1d <= r_fifo_B_rden;
    end
end


always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_cnt <= 'd0;
    else if(r_arbiter)
        r_cnt <= 'd0;
    else if(r_cnt == 8)
        r_cnt <= r_cnt;
    else if(r_arbiter == 0)
        r_cnt <= r_cnt + 1;
    else 
        r_cnt <= 'd0;
end

always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_arbiter <= 'd0;
    else if(ro_last)
        r_arbiter <= 'd0;
    else if(!w_fifo_A_empty && r_arbiter == 0 && r_cnt == 8)
        r_arbiter <= 'd1;
    else if(!w_fifo_B_empty && r_arbiter == 0 && r_cnt == 8)
        r_arbiter <= 'd2;
    else 
        r_arbiter <= r_arbiter;
end 

always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst) 
        ro_data  <= 'd0;
    else if(r_arbiter == 1)  
        ro_data  <= w_fifo_A_dout;
    else if(r_arbiter == 2)   
        ro_data  <= w_fifo_B_dout;
    else  
        ro_data  <= 'd0;
end

always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        ro_valid <= 'd0;
    else 
        ro_valid <= r_fifo_rd[0];
end

always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        ro_last <= 'd0;
    else if(!w_rd_en & r_rd_en)
        ro_last <= 'd1;
    else 
        ro_last <= 'd0;
end


always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_fifo_A_rden <= 'd0;
    else if(r_arbiter == 1 && r_rd_cnt == ri_len_A - 1)
        r_fifo_A_rden <= 'd0;
    else if(r_arbiter == 1 && !w_fifo_A_empty && !ro_valid)
        r_fifo_A_rden <= 'd1;
    else 
        r_fifo_A_rden <= r_fifo_A_rden;
end

always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_fifo_B_rden <= 'd0;
    else if(r_arbiter == 2 && r_rd_cnt == ri_len_B - 1)
        r_fifo_B_rden <= 'd0;
    else if(r_arbiter == 2 && !w_fifo_B_empty && !ro_valid)
        r_fifo_B_rden <= 'd1;
    else 
        r_fifo_B_rden <= r_fifo_B_rden;
end

always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_rd_cnt <= 'd0;
    else if(r_arbiter == 1 && r_rd_cnt == ri_len_A - 1)
        r_rd_cnt <= 'd0;
    else if(r_arbiter == 2 && r_rd_cnt == ri_len_B - 1)
        r_rd_cnt <= 'd0;
    else if(r_fifo_A_rden | r_fifo_B_rden)
        r_rd_cnt <= r_rd_cnt + 1;
    else 
        r_rd_cnt <= r_rd_cnt;
end

always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_fifo_rd <= 'd0;
    else 
        r_fifo_rd <= {r_fifo_rd[0],(r_fifo_A_rden | r_fifo_B_rden)};
end

always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        r_rd_en <= 'd0;
    else 
        r_rd_en <= w_rd_en;
end

//流控的过程
//1. A的数据来了,但是B还有帧还没发完,先输出stop信号。
//2. stop时,会A先发打断,完成然后把B的帧发了。
//3. A是空的,B也是空的,并且还在stop状态,此时拉低stop信号,正常输出
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst)
        ro_next_frame_stop <= 'd0;
    else if(ro_next_frame_stop && r_arbiter == 2 && w_fifo_B_empty)
        ro_next_frame_stop <= 'd0;
    else if(r_arbiter == 1 && !w_fifo_B_empty)
        ro_next_frame_stop <= 'd1;
    else 
        ro_next_frame_stop <= ro_next_frame_stop;
end


always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst) begin
        r_rden_A_pos <= 'd0;
        r_rden_B_pos <= 'd0;
    end else begin
        r_rden_A_pos <= w_rden_A_pos ;
        r_rden_B_pos <= w_rden_B_pos ;
    end 
end
always@(posedge i_clk,posedge i_rst)
begin
    if(i_rst) begin
        ro_type <= 'd0;
        ro_len  <= 'd0;
    end else if(r_arbiter == 1 && r_rden_A_pos) begin
        ro_type <= w_A_type_len[31:16];
        ro_len  <= w_A_type_len[15:0];
    end else if(r_arbiter == 2 && r_rden_B_pos) begin
        ro_type <= w_B_type_len[31:16];
        ro_len  <= w_B_type_len[15:0];
    end else begin
        ro_type <= ro_type;
        ro_len  <= ro_len ;
    end
end

endmodule

模块收发组合

1 MAC层收发

module Ethernet_MAC#(
    parameter       P_TARTGET_MAC   =   {8'h00,8'h00,8'h00,8'h00,8'h00,8'h00},
                    P_SOURCE_MAC    =   {8'h00,8'h00,8'h00,8'h00,8'h00,8'h00},
                    P_CRC_CHECK     =   1
)(
    input           i_clk       ,
    input           i_rst       ,

    /*--------info port--------*/   
    input  [47:0]   i_target_mac        ,
    input           i_target_mac_valid  ,
    input  [47:0]   i_source_mac        ,
    input           i_source_mac_valid  ,

    /*--------data port--------*/
    input           i_udp_valid         ,
    output          o_udp_ready         ,

    input  [15:0]   i_send_type         ,
    input  [15:0]   i_send_len          ,
    input  [7 :0]   i_send_data         ,
    input           i_send_last         ,
    input           i_send_valid        ,

    output [7 :0]   o_ip_data           ,
    output          o_ip_last           ,
    output          o_ip_valid          ,
    output [7 :0]   o_arp_data          ,
    output          o_arp_last          ,
    output          o_arp_valid         ,
    output [47:0]   o_rec_src_mac       ,
    output          o_rec_src_valid     ,
    output          o_crc_error         ,   
    output          o_crc_valid         , 

    /*--------GMII port--------*/
    output [7 :0]   o_GMII_data         ,
    output          o_GMII_valid        ,
    input  [7 :0]   i_GMII_data         ,
    input           i_GMII_valid
);


(* mark_debug = "true" *)wire  [15:0]        w_post_type             ;
(* mark_debug = "true" *)wire  [7 :0]        w_post_data             ;
(* mark_debug = "true" *)wire                w_post_last             ;
(* mark_debug = "true" *)wire                w_post_valid            ;
(* mark_debug = "true" *)wire  [15:0]        w_crc_post_type         ;
(* mark_debug = "true" *)wire  [7 :0]        w_crc_post_data         ;
(* mark_debug = "true" *)wire                w_crc_post_last         ;
(* mark_debug = "true" *)wire                w_crc_post_valid        ;
(* mark_debug = "true" *)wire                w_crc_error             ;       
(* mark_debug = "true" *)wire                w_crc_valid             ;       
    
assign o_crc_error = w_crc_error            ;    
assign o_crc_valid = w_crc_valid            ;    

MAC_tx#(
    .P_TARTGET_MAC          (P_TARTGET_MAC),
    .P_SOURCE_MAC           (P_SOURCE_MAC ),
    .P_CRC_CHECK            (P_CRC_CHECK  )  
)
MAC_tx_u0
(
    .i_clk                  (i_clk             ),
    .i_rst                  (i_rst             ),
    .i_target_mac           (i_target_mac      ),
    .i_target_mac_valid     (i_target_mac_valid),
    .i_source_mac           (i_source_mac      ),
    .i_source_mac_valid     (i_source_mac_valid),
    .i_udp_valid            (i_udp_valid       ),
    .o_udp_ready            (o_udp_ready       ),
    .i_send_type            (i_send_type       ),
    .i_send_len             (i_send_len        ),
    .i_send_data            (i_send_data       ),
    .i_send_last            (i_send_last       ),
    .i_send_valid           (i_send_valid      ),
    .o_GMII_data            (o_GMII_data       ),
    .o_GMII_valid           (o_GMII_valid      )
);

mac_arp_ip_mux mac_arp_ip_mux_u0(
    .i_clk                  (i_clk              ),
    .i_rst                  (i_rst              ),
    .i_type                 (w_crc_post_type    ),
    .i_data                 (w_crc_post_data    ),
    .i_last                 (w_crc_post_last    ),
    .i_valid                (w_crc_post_valid   ),
    .o_ip_data              (o_ip_data          ),
    .o_ip_last              (o_ip_last          ),
    .o_ip_valid             (o_ip_valid         ),
    .o_arp_data             (o_arp_data         ),
    .o_arp_last             (o_arp_last         ),
    .o_arp_valid            (o_arp_valid        )
);

CRC_Data_Pro CRC_Data_Pro_u0(
    .i_clk                  (i_clk              ),
    .i_rst                  (i_rst              ),
    .i_per_type             (w_post_type        ),
    .i_per_data             (w_post_data        ),
    .i_per_last             (w_post_last        ),
    .i_per_valid            (w_post_valid       ),
    .i_per_crc_error        (w_crc_error        ),
    .i_per_crc_valid        (w_crc_valid        ),
    .o_post_type            (w_crc_post_type    ),
    .o_post_data            (w_crc_post_data    ),
    .o_post_last            (w_crc_post_last    ),
    .o_post_valid           (w_crc_post_valid   )   
);

MAC_rx#(
    .P_TARTGET_MAC          (P_TARTGET_MAC      ),
    .P_SOURCE_MAC           (P_SOURCE_MAC       ),
    .P_CRC_CHECK            (P_CRC_CHECK        )  
)
MAC_rx_u0
(
    .i_clk                  (i_clk             ),
    .i_rst                  (i_rst             ),
    .i_target_mac           (i_target_mac      ),
    .i_target_mac_valid     (i_target_mac_valid),
    .i_source_mac           (i_source_mac      ),
    .i_source_mac_valid     (i_source_mac_valid),
    .o_post_type            (w_post_type        ),
    .o_post_data            (w_post_data        ),
    .o_post_last            (w_post_last        ),
    .o_post_valid           (w_post_valid       ),
    .o_rec_src_mac          (o_rec_src_mac     ),
    .o_rec_src_valid        (o_rec_src_valid   ),
    .o_crc_error            (w_crc_error       ),   
    .o_crc_valid            (w_crc_valid       ),    
    .i_GMII_data            (i_GMII_data       ),
    .i_GMII_valid           (i_GMII_valid      )
);

endmodule

2 ARP层收发

module Ethernet_ARP#(
    parameter       P_TARGET_IP = {8'd192,8'd168,8'd1,8'd1},
    parameter       P_SOURCE_MAC = {8'h00,8'h00,8'h00,8'h00,8'h00,8'h00},
    parameter       P_SOURCE_IP  = {8'd192,8'd168,8'd1,8'd2}
)(
    input           i_clk           ,
    input           i_rst           ,

    input   [31:0]  i_source_ip     ,
    input           i_s_ip_valid    ,
    input   [47:0]  i_source_mac    ,
    input           i_s_mac_valid   ,
    input   [31:0]  i_target_ip     ,
    input           i_target_valid  , 

    input  [31:0]   i_seek_ip           ,
    input           i_seek_valid        ,
    output  [47:0]  o_rec_target_mac    ,
    output          o_rec_target_valid  ,

    output  [7 :0]  o_mac_data      ,
    output          o_mac_last      ,
    output          o_mac_valid     ,

    input   [7 :0]  i_mac_data      ,
    input           i_mac_last      ,
    input           i_mac_valid     
);

wire                w_trig_reply    ;
wire [47:0]         w_rec_target_mac    ;   
wire [31:0]         w_target_ip         ;   
wire                w_rec_target_valid  ;
wire [31:0]         w_arp_seek_ip     ;   
wire                w_arp_seek_valid  ;

ARP_tx#(
    .P_TARGET_IP     (P_TARGET_IP                           ),
    .P_SOURCE_MAC    (P_SOURCE_MAC                          ),
    .P_SOURCE_IP     (P_SOURCE_IP                           )
)
ARP_tx_u0
(
    .i_clk           (i_clk                                 ),
    .i_rst           (i_rst                                 ),
    .i_target_ip     (i_target_ip                           ),
    .i_target_valid  (i_target_valid                        ),
    .i_source_mac    (i_source_mac                          ),
    .i_s_mac_valid   (i_s_mac_valid                         ),
    .i_source_ip     (i_source_ip                           ),
    .i_s_ip_valid    (i_s_ip_valid                          ),
    .i_reply_mac     (w_rec_target_mac                      ),
    .i_trig_reply    (w_trig_reply                          ),
    .i_active_send   (0),
    .o_seek_ip       (w_arp_seek_ip   ),
    .o_seek_valid    (w_arp_seek_valid),
    .o_mac_data      (o_mac_data                            ),
    .o_mac_last      (o_mac_last                            ),
    .o_mac_valid     (o_mac_valid                           )
);

ARP_Table ARP_Table_u0(
    .i_clk           (i_clk                                 ),
    .i_rst           (i_rst                                 ),

    .i_seek_ip       (i_seek_ip                             ),
    .i_seek_valid    (i_seek_valid                          ),

    .i_updata_ip     (w_target_ip                           ),
    .i_updata_mac    (w_rec_target_mac                      ),
    .i_updata_valid  (w_rec_target_valid                    ),

    .o_active_mac    (o_rec_target_mac                      ),
    .o_active_valid  (o_rec_target_valid                    )
);  

ARP_rx#(
    .P_TARGET_IP     (P_TARGET_IP                           ),
    .P_SOURCE_MAC    (P_SOURCE_MAC                          ),
    .P_SOURCE_IP     (P_SOURCE_IP                           )
)
ARP_rx_U0
(
    .i_clk           (i_clk                                 ),
    .i_rst           (i_rst                                 ),
    .i_source_ip     (i_source_ip                           ),
    .i_s_ip_valid    (i_s_ip_valid                          ),
    .o_target_mac    (w_rec_target_mac                      ),
    .o_target_ip     (w_target_ip                           ),
    .o_target_valid  (w_rec_target_valid                    ),
    .o_tirg_reply    (w_trig_reply                          ),
    .i_mac_data      (i_mac_data                            ),
    .i_mac_last      (i_mac_last                            ),
    .i_mac_valid     (i_mac_valid                           )
);

endmodule

2 IP层收发

module Ethernet_IP#(
    parameter       P_ST_TARGET_IP = {8'd192,8'd168,8'd1,8'd0},
    parameter       P_ST_SOURCE_IP = {8'd192,8'd168,8'd1,8'd1}
)(
    input               i_clk       ,
    input               i_rst       ,

    /*--------info port --------*/
    input  [31:0]   i_target_ip         ,
    input           i_target_valid      ,
    input  [31:0]   i_source_ip         ,
    input           i_source_valid      ,

    /*--------data port--------*/
    input  [7 :0]   i_send_type         ,
    input  [15:0]   i_send_len          ,
    input  [7 :0]   i_send_data         ,
    input           i_send_last         ,
    input           i_send_valid        ,

    output [15:0]   o_udp_len           ,
    output [7 :0]   o_udp_data          ,
    output          o_udp_last          ,
    output          o_udp_valid         ,
    output [15:0]   o_icmp_len          ,
    output [7 :0]   o_icmp_data         ,
    output          o_icmp_last         ,
    output          o_icmp_valid        ,
    output [31:0]   o_source_ip         ,
    output          o_source_ip_valid   ,

    /*--------arp port--------*/
    output [31:0]   o_arp_seek_ip       ,
    output          o_arp_seek_valid    ,
    /*--------mac port--------*/
    output [15:0]   o_mac_type          ,
    output [15:0]   o_mac_len           ,
    output [7 :0]   o_mac_data          ,
    output          o_mac_last          ,
    output          o_mac_valid         ,

    input  [7 :0]   i_mac_data          ,
    input           i_mac_last          ,
    input           i_mac_valid 

);

IP_tx#(
    .P_ST_TARGET_IP         (P_ST_TARGET_IP         ),
    .P_ST_SOURCE_IP         (P_ST_SOURCE_IP         )
)
IP_tx_u0
(
    .i_clk                  (i_clk                  ),
    .i_rst                  (i_rst                  ),
    .i_target_ip            (i_target_ip            ),
    .i_target_valid         (i_target_valid         ),
    .i_source_ip            (i_source_ip            ),
    .i_source_valid         (i_source_valid         ),
    .i_send_type            (i_send_type            ),
    .i_send_len             (i_send_len             ),
    .i_send_data            (i_send_data            ),
    .i_send_last            (i_send_last            ),
    .i_send_valid           (i_send_valid           ),
    .o_arp_seek_ip          (o_arp_seek_ip          ),
    .o_arp_seek_valid       (o_arp_seek_valid       ),
    .o_mac_type             (o_mac_type             ),
    .o_mac_len              (o_mac_len              ),
    .o_mac_data             (o_mac_data             ),
    .o_mac_last             (o_mac_last             ),
    .o_mac_valid            (o_mac_valid            )  
);

IP_rx#(
    .P_ST_TARGET_IP         (P_ST_TARGET_IP         ),   
    .P_ST_SOURCE_IP         (P_ST_SOURCE_IP         )
)
IP_rx_u0
(
    .i_clk                  (i_clk                  ),
    .i_rst                  (i_rst                  ),
    .i_target_ip            (i_target_ip            ),
    .i_target_valid         (i_target_valid         ),
    .i_source_ip            (i_source_ip            ),
    .i_source_valid         (i_source_valid         ),
    .o_udp_len              (o_udp_len              ),
    .o_udp_data             (o_udp_data             ),
    .o_udp_last             (o_udp_last             ),
    .o_udp_valid            (o_udp_valid            ),
    .o_icmp_len             (o_icmp_len             ),
    .o_icmp_data            (o_icmp_data            ),
    .o_icmp_last            (o_icmp_last            ),
    .o_icmp_valid           (o_icmp_valid           ),
    .o_source_ip            (o_source_ip            ),
    .o_source_ip_valid      (o_source_ip_valid      ),
    .i_mac_data             (i_mac_data             ),
    .i_mac_last             (i_mac_last             ),
    .i_mac_valid            (i_mac_valid            )   

);

endmodule
3 ICMP层收发
module Ethernet_ICMP(
    input           i_clk           ,
    input           i_rst           ,

    input  [15:0]   i_icmp_len      ,
    input  [7 :0]   i_icmp_data     ,
    input           i_icmp_last     ,
    input           i_icmp_valid    , 
    output [15:0]   o_icmp_len      ,
    output [7 :0]   o_icmp_data     ,
    output          o_icmp_last     ,
    output          o_icmp_valid    
);

wire        w_trig_reply    ;   
wire [31:0] w_trig_seq      ;   

ICMP_tx ICMP_tx_u0(
    .i_clk              (i_clk          ),
    .i_rst              (i_rst          ),
    .i_trig_reply       (w_trig_reply   ),
    .i_trig_seq         (w_trig_seq     ),
    .o_icmp_len         (o_icmp_len     ),
    .o_icmp_data        (o_icmp_data    ),
    .o_icmp_last        (o_icmp_last    ),
    .o_icmp_valid       (o_icmp_valid   )
);

ICMP_rx ICMP_rx_u0(
    .i_clk              (i_clk          ),
    .i_rst              (i_rst          ),
    .i_icmp_len         (i_icmp_len     ),
    .i_icmp_data        (i_icmp_data    ),
    .i_icmp_last        (i_icmp_last    ),
    .i_icmp_valid       (i_icmp_valid   ),           
    .o_trig_reply       (w_trig_reply   ),
    .o_trig_seq         (w_trig_seq     )         
);


endmodule
3 UDP层收发
module Ethernet_UDP#(
    parameter           P_TARGET_PORT   =  16'h8080 ,
                        P_SOURCE_PORT   =  16'h8080
)(
    input               i_clk           ,
    input               i_rst           ,

    /*--------info port-------*/
    input  [15:0]       i_target_port   ,
    input               i_target_valid  ,
    input  [15:0]       i_source_port   ,
    input               i_source_valid  ,

    /*--------data port--------*/
    input  [15:0]       i_send_len      ,
    input  [7 :0]       i_send_data     ,
    input               i_send_last     ,
    input               i_send_valid    ,

    output [15:0]       o_udp_len       ,
    output [7 :0]       o_udp_data      ,
    output              o_udp_last      ,
    output              o_udp_valid     ,

    /*--------ip port--------*/
    output [15:0]       o_ip_len        ,
    output [7 :0]       o_ip_data       ,
    output              o_ip_last       ,
    output              o_ip_valid      ,
    
    input  [15:0]       i_ip_len        ,
    input  [7 :0]       i_ip_data       ,
    input               i_ip_last       ,
    input               i_ip_valid      
);

UDP_tx#(
    .P_TARGET_PORT      (P_TARGET_PORT),
    .P_SOURCE_PORT      (P_SOURCE_PORT)
)
UDP_tx_u0
(
    .i_clk              (i_clk          ),
    .i_rst              (i_rst          ),
    .i_target_port      (i_target_port  ),
    .i_target_valid     (i_target_valid ),
    .i_source_port      (i_source_port  ),
    .i_source_valid     (i_source_valid ),
    .i_send_len         (i_send_len     ),
    .i_send_data        (i_send_data    ),
    .i_send_last        (i_send_last    ),
    .i_send_valid       (i_send_valid   ),
    .o_ip_len           (o_ip_len       ),
    .o_ip_data          (o_ip_data      ),
    .o_ip_last          (o_ip_last      ),
    .o_ip_valid         (o_ip_valid     )
);

UDP_rx#(
    .P_TARGET_PORT      (P_TARGET_PORT),
    .P_SOURCE_PORT      (P_SOURCE_PORT)
)
UDP_rx_u0
(
    .i_clk              (i_clk          ),
    .i_rst              (i_rst          ),
    .i_target_port      (i_target_port  ),
    .i_target_valid     (i_target_valid ),
    .i_source_port      (i_source_port  ),
    .i_source_valid     (i_source_valid ),
    .o_udp_len          (o_udp_len      ),
    .o_udp_data         (o_udp_data     ),
    .o_udp_last         (o_udp_last     ),
    .o_udp_valid        (o_udp_valid    ),
    .i_ip_len           (i_ip_len       ),
    .i_ip_data          (i_ip_data      ),
    .i_ip_last          (i_ip_last      ),
    .i_ip_valid         (i_ip_valid     )
);
endmodule

UDP协议栈

FPGA——三速自适应以太网设计(1)基本模块,FPGA——三速以太网协议讲解与实战,fpga开发,嵌入式,fpga,网络,学习

 module UDP_Stack_Module#(
    parameter           P_TARGET_PORT   = 16'h8080                                 ,
                        P_SOURCE_PORT   = 16'h8080                                 ,
                        P_TARGET_IP     = {8'd192,8'd168,8'd1,8'd0}                ,
                        P_SOURCE_IP     = {8'd192,8'd168,8'd1,8'd1}                ,
                        P_TARTGET_MAC   = {8'h00,8'h00,8'h00,8'h00,8'h00,8'h00}    ,
                        P_SOURCE_MAC    = {8'h00,8'h00,8'h00,8'h00,8'h00,8'h00}    ,
                        P_CRC_CHEKC     =  1                                                                               
)(
    input               i_clk               ,
    input               i_rst               ,
    /*--------info port-------*/    
    input  [15:0]       i_target_port       ,
    input               i_target_port_valid ,
    input  [15:0]       i_source_port       ,
    input               i_source_port_valid ,
    input  [31:0]       i_target_ip         ,
    input               i_target_ip_valid   ,
    input  [31:0]       i_source_ip         ,
    input               i_source_ip_valid   ,
    input  [47:0]       i_target_mac        ,
    input               i_target_mac_valid  ,
    input  [47:0]       i_source_mac        ,
    input               i_source_mac_valid  ,
    /*--------data port--------*/
    input  [15:0]       i_send_len          ,
    input  [7 :0]       i_send_data         ,
    input               i_send_last         ,
    input               i_send_valid        ,
    output              o_send_ready        ,
    output [15:0]       o_rec_len           ,
    output [7 :0]       o_rec_data          ,
    output              o_rec_last          ,
    output              o_rec_valid         ,

    output [31:0]       o_source_ip         ,
    output              o_source_ip_valid   ,
    output [47:0]       o_rec_src_mac       ,
    output              o_rec_src_valid     ,
    output              o_crc_error         ,   
    output              o_crc_valid         , 
    /*--------GMII port--------*/
    output [7 :0]       o_GMII_data         ,
    output              o_GMII_valid        ,
    input  [7 :0]       i_GMII_data         ,
    input               i_GMII_valid
);


wire                    w_udp_ready             ;
wire                    w_ip_next_frame_stop    ;
wire                    w_udp_next_frame_stop   ;
wire [15:0]             w_udp2ip_len            ;    
wire [7 :0]             w_udp2ip_data           ;    
wire                    w_udp2ip_last           ;    
wire                    w_udp2ip_valid          ;    
(* mark_debug = "true" *)wire [15:0]             w_ip2udp_len            ;    
(* mark_debug = "true" *)wire [7 :0]             w_ip2udp_data           ;    
(* mark_debug = "true" *)wire                    w_ip2udp_last           ;    
(* mark_debug = "true" *)wire                    w_ip2udp_valid          ;    

wire [15:0]             w_icmp_rec_len          ;
wire [7 :0]             w_icmp_rec_data         ;
wire                    w_icmp_rec_last         ;
wire                    w_icmp_rec_valid        ;
wire [15:0]             w_icmp_send_len         ;
wire [7 :0]             w_icmp_send_data        ;
wire                    w_icmp_send_last        ;
wire                    w_icmp_send_valid       ;

wire [15:0]             w_icmp_udp_type         ;
wire [15:0]             w_icmp_udp_len          ;
wire [7 :0]             w_icmp_udp_data         ;
wire                    w_icmp_udp_last         ;
wire                    w_icmp_udp_valid        ;

wire [47:0]             w_arp_rec_target_mac    ;
wire                    w_arp_rec_target_valid  ;

wire [7 :0]             w_arp2mac_data          ;
wire                    w_arp2mac_last          ;
wire                    w_arp2mac_valid         ;
wire [7 :0]             w_mac2arp_data          ;
wire                    w_mac2arp_last          ;
wire                    w_mac2arp_valid         ;

wire [15:0]             w_ip2mac_type           ;
wire [15:0]             w_ip2mac_len            ;
wire [7 :0]             w_ip2mac_data           ;
wire                    w_ip2mac_last           ;
wire                    w_ip2mac_valid          ;
(* mark_debug = "true" *)wire [7 :0]             w_mac2ip_data           ;
(* mark_debug = "true" *)wire                    w_mac2ip_last           ;
(* mark_debug = "true" *)wire                    w_mac2ip_valid          ;

wire [15:0]             w_ip_icmp_2_mac_type    ;
wire [15:0]             w_ip_icmp_2_mac_len     ;
wire [7 :0]             w_ip_icmp_2_mac_data    ;
wire                    w_ip_icmp_2_mac_last    ;
wire                    w_ip_icmp_2_mac_valid   ;

wire [31:0]             w_arp_seek_ip           ;
wire                    w_arp_seek_valid        ;

wire                    w_send_ready            ;
reg                     ro_send_ready           ;
reg  [7 :0]             r_ready_cnt             ;
reg                     ri_send_valid           ;

assign o_send_ready     = w_send_ready;
assign w_send_ready     = ~w_ip_next_frame_stop & ~w_udp_next_frame_stop & w_udp_ready;

Ethernet_UDP#(
    .P_TARGET_PORT              (P_TARGET_PORT      ),
    .P_SOURCE_PORT              (P_SOURCE_PORT      )  
)           
Ethernet_UDP_u0         
(           
    .i_clk                      (i_clk              ),
    .i_rst                      (i_rst              ),
    .i_target_port              (i_target_port      ),
    .i_target_valid             (i_target_port_valid),
    .i_source_port              (i_source_port      ),
    .i_source_valid             (i_source_port_valid),
    .i_send_len                 (i_send_len         ),
    .i_send_data                (i_send_data        ),
    .i_send_last                (i_send_last        ),
    .i_send_valid               (i_send_valid       ),
    .o_udp_len                  (o_rec_len          ),
    .o_udp_data                 (o_rec_data         ),
    .o_udp_last                 (o_rec_last         ),
    .o_udp_valid                (o_rec_valid        ),
    .o_ip_len                   (w_udp2ip_len       ),
    .o_ip_data                  (w_udp2ip_data      ),
    .o_ip_last                  (w_udp2ip_last      ),
    .o_ip_valid                 (w_udp2ip_valid     ),
    .i_ip_len                   (w_ip2udp_len       ),
    .i_ip_data                  (w_ip2udp_data      ),
    .i_ip_last                  (w_ip2udp_last      ),
    .i_ip_valid                 (w_ip2udp_valid     )
);

Ethernet_ICMP Ethernet_ICMP_u0(
    .i_clk                      (i_clk              ),
    .i_rst                      (i_rst              ),
    .i_icmp_len                 (w_icmp_rec_len     ),
    .i_icmp_data                (w_icmp_rec_data    ),
    .i_icmp_last                (w_icmp_rec_last    ),
    .i_icmp_valid               (w_icmp_rec_valid   ), 
    .o_icmp_len                 (w_icmp_send_len    ),
    .o_icmp_data                (w_icmp_send_data   ),
    .o_icmp_last                (w_icmp_send_last   ),
    .o_icmp_valid               (w_icmp_send_valid  )
);

Data_2to1 Data_2to1_ICMP_UDP(
    .i_clk                      (i_clk              ),
    .i_rst                      (i_rst              ),

    .i_type_A                   (17                 ),
    .i_len_A                    (w_udp2ip_len       ),
    .i_data_A                   (w_udp2ip_data      ),
    .i_last_A                   (w_udp2ip_last      ),
    .i_valid_A                  (w_udp2ip_valid     ),
    .o_next_frame_stop          (w_udp_next_frame_stop),
        
    .i_type_B                   (1                  ),
    .i_len_B                    (w_icmp_send_len    ),
    .i_data_B                   (w_icmp_send_data   ),
    .i_last_B                   (w_icmp_send_last   ),
    .i_valid_B                  (w_icmp_send_valid  ),

    .o_type                     (w_icmp_udp_type    ),
    .o_len                      (w_icmp_udp_len     ),
    .o_data                     (w_icmp_udp_data    ),
    .o_last                     (w_icmp_udp_last    ),
    .o_valid                    (w_icmp_udp_valid   )
);


Ethernet_ARP#(
    .P_TARGET_IP                (P_TARGET_IP                            ),
    .P_SOURCE_MAC               (P_SOURCE_MAC                           ),
    .P_SOURCE_IP                (P_SOURCE_IP                            )
)   
Ethernet_ARP_u0 
(   
    .i_clk                      (i_clk                                  ),
    .i_rst                      (i_rst                                  ),
    .i_source_ip                (i_source_ip                            ),
    .i_s_ip_valid               (i_source_ip_valid                      ),
    .i_source_mac               (i_source_mac                           ),
    .i_s_mac_valid              (i_source_mac_valid                     ),
    .i_target_ip                (i_target_ip                            ),
    .i_target_valid             (i_target_ip_valid                      ), 
    .i_seek_ip                  (w_arp_seek_ip                          ),
    .i_seek_valid               (w_arp_seek_valid                       ),
    .o_rec_target_mac           (w_arp_rec_target_mac                   ),
    .o_rec_target_valid         (w_arp_rec_target_valid                 ),
    .o_mac_data                 (w_arp2mac_data                         ),
    .o_mac_last                 (w_arp2mac_last                         ),
    .o_mac_valid                (w_arp2mac_valid                        ),
    .i_mac_data                 (w_mac2arp_data                         ),
    .i_mac_last                 (w_mac2arp_last                         ),
    .i_mac_valid                (w_mac2arp_valid                        )
);

Ethernet_IP#(
    .P_ST_TARGET_IP             (P_TARGET_IP            ),
    .P_ST_SOURCE_IP             (P_SOURCE_IP            )
)
Ethernet_IP_u0
(
    .i_clk                      (i_clk                  ),
    .i_rst                      (i_rst                  ),
    .i_target_ip                (i_target_ip            ),
    .i_target_valid             (i_target_ip_valid      ),
    .i_source_ip                (i_source_ip            ),
    .i_source_valid             (i_source_ip_valid      ),
    .i_send_type                (w_icmp_udp_type[7 :0]  ),
    .i_send_len                 (w_icmp_udp_len         ),
    .i_send_data                (w_icmp_udp_data        ),
    .i_send_last                (w_icmp_udp_last        ),
    .i_send_valid               (w_icmp_udp_valid       ),
    .o_udp_len                  (w_ip2udp_len           ),
    .o_udp_data                 (w_ip2udp_data          ),
    .o_udp_last                 (w_ip2udp_last          ),
    .o_udp_valid                (w_ip2udp_valid         ),
    .o_icmp_len                 (w_icmp_rec_len         ),
    .o_icmp_data                (w_icmp_rec_data        ),
    .o_icmp_last                (w_icmp_rec_last        ),
    .o_icmp_valid               (w_icmp_rec_valid       ),
    .o_source_ip                (o_source_ip            ),
    .o_source_ip_valid          (o_source_ip_valid      ),
    .o_arp_seek_ip              (w_arp_seek_ip          ),
    .o_arp_seek_valid           (w_arp_seek_valid       ),
    .o_mac_type                 (w_ip2mac_type          ),
    .o_mac_len                  (w_ip2mac_len           ),
    .o_mac_data                 (w_ip2mac_data          ),
    .o_mac_last                 (w_ip2mac_last          ),
    .o_mac_valid                (w_ip2mac_valid         ),
    .i_mac_data                 (w_mac2ip_data          ),
    .i_mac_last                 (w_mac2ip_last          ),
    .i_mac_valid                (w_mac2ip_valid         )   

);

Data_2to1 Data_2to1_ARP_IP(
    .i_clk                      (i_clk              ),
    .i_rst                      (i_rst              ),

    .i_type_A                   (16'h0806           ),
    .i_len_A                    (50                 ),
    .i_data_A                   (w_arp2mac_data     ),
    .i_last_A                   (w_arp2mac_last     ),
    .i_valid_A                  (w_arp2mac_valid    ),
    .o_next_frame_stop          (w_ip_next_frame_stop),
        
    .i_type_B                   (w_ip2mac_type      ),
    .i_len_B                    (w_ip2mac_len       ),
    .i_data_B                   (w_ip2mac_data      ),
    .i_last_B                   (w_ip2mac_last      ),
    .i_valid_B                  (w_ip2mac_valid     ),

    .o_type                     (w_ip_icmp_2_mac_type   ),
    .o_len                      (w_ip_icmp_2_mac_len    ),
    .o_data                     (w_ip_icmp_2_mac_data   ),
    .o_last                     (w_ip_icmp_2_mac_last   ),
    .o_valid                    (w_ip_icmp_2_mac_valid  )
);

Ethernet_MAC#(
    .P_TARTGET_MAC              (P_TARTGET_MAC                          ),
    .P_SOURCE_MAC               (P_SOURCE_MAC                           ),
    .P_CRC_CHECK                (P_CRC_CHEKC                            ) 
)   
Ethernet_MAC_u0 
(   
    .i_clk                      (i_clk                              ),
    .i_rst                      (i_rst                              ),
    .i_target_mac               (w_arp_rec_target_mac               ),
    .i_target_mac_valid         (w_arp_rec_target_valid             ),
    .i_source_mac               (i_source_mac                       ),
    .i_source_mac_valid         (i_source_mac_valid                 ),
    .i_udp_valid                (i_send_valid                       ),
    .o_udp_ready                (w_udp_ready                        ),
    .i_send_type                (w_ip_icmp_2_mac_type               ),
    .i_send_len                 (w_ip_icmp_2_mac_len                ),
    .i_send_data                (w_ip_icmp_2_mac_data               ),
    .i_send_last                (w_ip_icmp_2_mac_last               ),
    .i_send_valid               (w_ip_icmp_2_mac_valid              ),
    .o_ip_data                  (w_mac2ip_data                      ),
    .o_ip_last                  (w_mac2ip_last                      ),
    .o_ip_valid                 (w_mac2ip_valid                     ),
    .o_arp_data                 (w_mac2arp_data                     ),
    .o_arp_last                 (w_mac2arp_last                     ),
    .o_arp_valid                (w_mac2arp_valid                    ),
    .o_rec_src_mac              (o_rec_src_mac                      ),
    .o_rec_src_valid            (o_rec_src_valid                    ),
    .o_crc_error                (o_crc_error                        ),   
    .o_crc_valid                (o_crc_valid                        ), 
    .o_GMII_data                (o_GMII_data                        ),
    .o_GMII_valid               (o_GMII_valid                       ),
    .i_GMII_data                (i_GMII_data                        ),
    .i_GMII_valid               (i_GMII_valid                       )    
);

endmodule

有问题可以加企鹅群 658476482 交流文章来源地址https://www.toymoban.com/news/detail-839915.html

到了这里,关于FPGA——三速自适应以太网设计(1)基本模块的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • FPGA - 以太网UDP通信(一)

    ​以太网是一种计算机局域网技术。IEEE组织的IEEE 802.3标准制定了以太网的技术标准,它规定了包括物理层的连线、电子信号和介质访问层协议的内容。 ​ 以太网是现实世界中最普遍的一种计算机网络。以太网有两类:第一类是经典以太网,第二类是交换式以太网,使用了一

    2024年04月18日
    浏览(58)
  • FPGA 以太网传输ov5640视频

    使用 DFZU4EV MPSoC 开发板及双目 OV5640 摄像头其中一个摄像头实现图像采集,并通过开发板上的以太网接口发送给上位机实时显示。 时钟模块用于为 I2C 驱动模块、以太网顶层模块和开始传输控制模块提供驱动时钟;I2C 驱动模块和 I2C 配置模块用于初始化 OV5640 图像传感器;摄像

    2024年04月10日
    浏览(54)
  • 基于FPGA的以太网相关文章导航

      首先需要了解以太网的一些接口协议标准,常见的MII、GMII、RGMII时序,便于后续开发。     【必读】从MII到RGMII,一文了解以太网PHY芯片不同传输接口信号时序!   介绍一款比较老的以太网PHY芯片88E1518,具有RGMII接口,分析该芯片的原理图和内部寄存器的配置方式

    2024年04月14日
    浏览(43)
  • 基于UDP协议的千兆以太网传输(FPGA)

    @[TOC]基于UDP协议的千兆以太网传输(FPGA) UDP协议是一种基于无连接协议,即发送端发送数据无需确认接收端是否存在;接收端收到数据后也无需给发送端反馈是否收到,所以UDP在数据发送过程中允许丢失一两包数据。用于对丢包不严格的场合,比如视频流,偶有一两帧的丢

    2024年02月12日
    浏览(74)
  • 以太网——MDIO(SMI)接口的FPGA实现

      在 MAC 与 PHY 之间,有一个配置接口,即 MDIO(也称 SMI,Serial Management Interface),可以配置 PHY 的工作模式、获取 PHY 芯片的工作状态等。本文以 PHY 芯片 B50610 为例,实现 MDIO 接口,以实现对传输速度、接口类型的自协商。   MDIO 包含 2 根信号线: MDC,由 MAC 侧提供给

    2024年02月16日
    浏览(49)
  • 基于FPGA的数据采集、编码、通讯和存储系统设计(即FPGA+RTL8211千兆以太网+SD卡存储+RTC+Uart+AD7606数模转换+电流放大采集等硬件设计与程序验证)

    介绍一个小项目,加强对FPGA相关接口的整体把握。 硬件及软件代码梳理: 硬件系统的主要功能框图,其中FPGA作为处理单元,实现了包括电流和电压的采集、千兆以太网通讯、SD卡本地数据存储和串口通讯等。已经过板级测试,测试包含:千兆网通讯收发测试、AD采集的数据

    2024年04月13日
    浏览(56)
  • FPGA优质开源项目 - UDP RGMII千兆以太网

    本文介绍一个FPGA开源项目:UDP RGMII千兆以太网通信。该项目在我之前的工作中主要是用于FPGA和电脑端之间进行图像数据传输。本文简要介绍一下该项目的千兆以太网通信方案、以太网IP核的使用以及Vivado工程源代码结构。 Vivado 的 Tri Mode Ethernet MAC IP核需要付费才能使用,因

    2024年02月14日
    浏览(82)
  • FPGA优质开源项目 – UDP万兆光纤以太网通信

    本文开源一个FPGA项目:UDP万兆光通信。该项目实现了万兆光纤以太网数据回环传输功能。Vivado工程代码结构和之前开源的《UDP RGMII千兆以太网》类似,只不过万兆以太网是调用了Xilinx的10G Ethernet Subsystem IP核实现。 下面围绕该IP核的使用、用户接口,以及数据传输方案展开介

    2024年02月10日
    浏览(60)
  • FPGA驱动千兆以太网PHY但电脑只显示百兆

    前两天公司做了个新板子,ZYNQ7035 + RTL8211E,拿给我测,于是写逻辑代码测试一下数据回环,没想到电脑端网络适配器一直显示是百兆网。查了多方原因,差点想手动配置寄存器了,但是想想又觉得不对,FPGA逻辑驱动以太网PHY芯片是不用配置寄存器的,只要PHY芯片外部引脚上

    2024年02月16日
    浏览(56)
  • FPGA通过以太网与PC机通信的完整方案

    FPGA(可编程逻辑门阵列)是一种灵活且高度可定制的芯片,可以用于实现各种数字电路。在许多应用中,FPGA与PC机之间的通信是至关重要的。本文将提供一个完整的方案,介绍如何使用FPGA通过以太网与PC机进行通信,并附带相应的源代码。 硬件准备 首先,我们需要准备以下

    2024年04月14日
    浏览(80)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包