SpringCloud-深度理解ElasticSearch

这篇具有很好参考价值的文章主要介绍了SpringCloud-深度理解ElasticSearch。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、Elasticsearch概述

1、Elasticsearch介绍

Elasticsearch(简称ES)是一个开源的分布式搜索和分析引擎,构建在Apache Lucene基础上。它提供了一个强大而灵活的工具,用于全文搜索、结构化搜索、分析以及数据可视化。ES最初设计用于处理大规模的日志数据,但其功能已经扩展到各种用例,包括应用程序搜索、业务分析等。简单来说,ElasticSearch是一款非常强大的开源搜索引擎,可以帮助我们从海量数据中快速找到需要的内容。

ElasticSearch结合kibana、Logstash、Beats, 也就是 Elastic stack (ELK)。被广泛应用在日志数据分析、实时监控等领域。其中,ElasticSearch是elastic stack的核心,负责存储、搜索、分析数据。
SpringCloud-深度理解ElasticSearch,Java,spring cloud,elasticsearch,spring,后端,lucene,搜索引擎


2、ElasticSearch的底层技术

ElasticSearch的底层技术是Lucene。Lucene 是一个由 Apache 公司开发的搜索引擎类库,采用 Java 语言编写,是 Apache 公司的顶级项目。Doug Cutting 于 1999 年首次推出。Lucene 通过倒排索引实现了强大的全文搜索功能。

优势
  1. 易扩展: Lucene 提供了灵活的架构,容易进行定制和扩展,以适应各种搜索需求。

  2. 高性能: 基于倒排索引的搜索机制使得 Lucene 在搜索效率上表现出色,适用于大规模数据的搜索操作。

缺点
  1. Java 语言限制: Lucene 主要采用 Java 编写,因此在非 Java 语言的项目中可能不太方便使用。

  2. 学习曲线陡峭: 对于初学者而言,Lucene 的学习曲线较陡峭,需要一定的时间来熟悉其 API 和使用方式。

  3. 不支持水平扩展: Lucene 在水平扩展方面相对有限,这可能对需要处理大量数据的应用造成一些挑战。

Lucene 作为搜索引擎类库的先驱,为开发者提供了强大的搜索和索引功能。虽然它具有一些限制,但在正确使用和理解的情况下,Lucene 仍然是许多项目中首选的搜索引擎工具之一。


3、ElasticSearch排名

ElasticSearch在搜搜引擎中的排名一直是遥遥领先。
最新搜索引擎排名如下:

  1. Elasticsearch:开源的分布式搜索引擎
  2. Splunk:商业项目
  3. Solr:Apache的开源搜索引擎

二、倒排索引的概念

在理解倒排索引之前,需要了解文档和词条的概念。每一条数据就是一个文档,对文档中的内容分词,得到的词语就是词条。
倒排索引是一种用于快速查找文档的数据结构,与传统的正向索引方式相反。它将每个文档中的单词映射到文档的位置,以便更快速地进行搜索。

1、传统索引(正向索引)

正向索引是按照数据表的记录顺序建立的索引,将文档的每个字段都进行索引,方便按照记录的顺序快速访问。正向索引适用于需要按照记录顺序进行检索的场景。

SpringCloud-深度理解ElasticSearch,Java,spring cloud,elasticsearch,spring,后端,lucene,搜索引擎


2、倒排索引

倒排索引则是按照字段值建立索引,以便于快速查找包含特定字段值的记录。倒排索引适用于需要根据字段值进行检索的场景

SpringCloud-深度理解ElasticSearch,Java,spring cloud,elasticsearch,spring,后端,lucene,搜索引擎


3、正向索引 vs. 倒排索引

SpringCloud-深度理解ElasticSearch,Java,spring cloud,elasticsearch,spring,后端,lucene,搜索引擎

在查询流程中,用户查询的关键词直接匹配倒排索引,从而快速定位包含该关键词的记录。这样的查询流程相比于正向索引,减少了对整个数据表的遍历,提高了查询效率。

倒排索引在处理大量文本数据、搜索引擎等场景中具有显著的优越性,能够提供更快速的检索速度。


三、ElasticSearch相关概念理解

1、ElasticSearch概念

① 节点(Node)

Elasticsearch集群由一个或多个节点组成,每个节点是集群中的一个服务器,负责存储数据并参与集群的索引和搜索功能。

② 索引(Index)

索引是相同类型的文档的集合,它们属于逻辑分组。每个文档都有一个唯一的ID,而索引则为这些文档提供了命名空间。

③ 类型(Type)

在较新的 Elasticsearch 版本中,类型已经逐渐被弃用。在较新的数据模型中,索引通常只包含一个类型。

④ 分片和副本(Shards and Replicas)

为了支持水平扩展和提高冗余性,ES将索引分为多个分片,每个分片是一个独立的索引。此外,每个分片都可以有零个或多个副本,用于提高数据的可用性和容错性。

⑤ 映射(Mapping)
  • 映射是索引中文档的字段约束信息,类似表的结构约束。
  • 映射定义了索引中的数据结构,包括字段的类型、分析器和其他属性。
  • 映射有助于确定如何索引和查询文档中的数据。

2、ES和MySQL的概念对比

从上面的ES的特性里,我们可以看到,ES和MySQL有很多相似的地方,下面是两者相似特性的对比:

MySQL Elasticsearch 说明
Table Index 索引(index)是文档的集合,类似数据库的表(table)
Row Document 文档(Document)是一条条的数据,类似数据库中的行(Row),文档都是JSON格式
Column Field 字段(Field)是JSON文档中的字段,类似数据库中的列(Column)
Schema Mapping Mapping(映射)是索引中文档的约束,例如字段类型约束,类似数据库的表结构(Schema)
SQL DSL DSL是Elasticsearch提供的JSON风格的请求语句,用来操作Elasticsearch,实现CRUD

四、ElasticSearch应用场景

1、ES参与的项目架构

在实际项目中,Elasticsearch(ES)常常与MySQL联用,形成了一种典型的项目架构。MySQL擅长处理事务类型的操作,能够确保数据的安全和一致性。因此,在项目中对于数据的增删改(事务类操作)仍然使用MySQL完成。而Elasticsearch则专注于海量数据的搜索、分析和计算,为项目提供高效的搜索功能。

示例架构如下:
SpringCloud-深度理解ElasticSearch,Java,spring cloud,elasticsearch,spring,后端,lucene,搜索引擎

通过这种架构,项目可以充分利用MySQL的事务处理能力,保障数据的完整性和可靠性。同时,借助Elasticsearch强大的搜索引擎和分析功能,实现对海量数据的快速检索和深度分析。


2、ES应用场景

Elasticsearch在各个领域都有广泛的应用,主要体现在以下几个方面:

① 搜索引擎

ES作为一款强大的全文搜索引擎,广泛应用于构建搜索引擎、文档检索系统等场景。通过对海量文本数据建立倒排索引,ES能够快速、准确地响应用户的搜索请求,为用户提供良好的搜索体验。

② 数据分析

在大数据分析领域,ES被广泛用于存储和分析大规模的日志数据、事件数据等。其强大的聚合和分析能力使得用户能够轻松地进行数据挖掘、可视化分析等操作,从而更好地理解数据背后的信息。

③ 实时监控

ES具有实时索引和搜索的能力,因此在实时监控系统中得到了广泛应用。通过将实时产生的监控数据存储在Elasticsearch中,用户可以及时获取系统的运行状况、异常信息等,实现对系统状态的实时监控。

④ 商业智能

ES也被应用于商业智能领域,支持用户进行复杂的数据分析和报表生成。通过整合多源数据,利用ES的搜索和分析功能,企业可以更好地理解市场趋势、用户行为等信息,为决策提供数据支持。

⑤ 地理信息系统

ES支持地理空间搜索,因此在地理信息系统(GIS)领域有着广泛的应用。用户可以利用ES存储和检索与地理位置相关的数据,实现空间数据的快速查询和分析。

总体而言,Elasticsearch的强大搜索和分析能力使其成为各行业解决大数据存储、搜索和分析难题的首选工具。


五、Elasticsearch总结

Elasticsearch(ES)作为一款开源、高性能的搜索引擎和分析工具,具有广泛的应用前景。通过本文的介绍,我们深入了解了Elasticsearch的基本概念、原理以及在实际项目中的应用场景。以下是对Elasticsearch的总结:

1、强大的搜索引擎功能

Elasticsearch以其卓越的全文搜索引擎功能而著称,能够快速、准确地响应用户的搜索请求。通过倒排索引等技术,ES实现了高效的文本搜索,广泛应用于构建搜索引擎、文档检索系统等场景。

2、高效的数据分析和聚合能力

在大数据分析领域,Elasticsearch通过实时索引和搜索的机制,支持对海量数据进行快速的分析和聚合。其灵活的查询语言和丰富的聚合功能使得用户能够轻松进行数据挖掘、可视化分析等操作。

3、实时监控和可视化

ES具有实时索引和搜索的特性,因此在实时监控系统中得到了广泛应用。通过将实时产生的监控数据存储在Elasticsearch中,用户可以及时获取系统的运行状况、异常信息等,实现对系统状态的实时监控。

4、多领域的应用场景

Elasticsearch不仅在搜索引擎领域有着出色的表现,还在数据分析、商业智能、实时监控、地理信息系统等多个领域取得了成功的应用。其灵活性和可扩展性使得ES成为解决大数据存储、搜索和分析难题的理想工具。

5、与MySQL等数据库的协同应用

在实际项目中,ES与传统关系型数据库如MySQL协同应用,形成了一个有机的整体。MySQL负责事务型操作,确保数据的安全和一致性,而Elasticsearch则专注于搜索和分析,提供高效的全文搜索和大数据处理能力。

综合而言,Elasticsearch以其卓越的性能和丰富的功能,在大数据时代发挥着越来越重要的作用。无论是构建搜索引擎、实现实时监控,还是进行复杂的数据分析,Elasticsearch都为用户提供了一种高效、可靠的解决方案。文章来源地址https://www.toymoban.com/news/detail-840123.html

到了这里,关于SpringCloud-深度理解ElasticSearch的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【SpringCloud——Elasticsearch(下)】

    聚合,可以实现对文档数据的统计、分析、运算。常见的聚合有三类: ①、桶聚合:用来对文档做分组 TermAggregation:按照文档字段值分组。 Date Histogram:按照日期解题分组,例如一周为一组,或者一月为一组。 ②、度量聚合:用以计算一些值,例如:最大值、最小值、平均

    2024年02月08日
    浏览(21)
  • 【SpringCloud——Elasticsearch(中)】

    以下操作案例均基于上篇的hotel索引库及其数据进行。 2.1、DSL语句 2.2、JAVA 注:showResult方法是将返回的响应进行解析,代码如下: 下文操作均使用此方法对响应进行解析。 全文检索查询会对用户输入的内容进行分词,常用于搜索框搜索。 3.1、DSL语句 3.2、JAVA 精确查询一般是

    2024年02月07日
    浏览(26)
  • SpringCloud:ElasticSearch之数据同步

    elasticsearch 中的酒店数据来自于 mysql 数据库,因此 mysql 数据发生改变时, elasticsearch 也必须跟着改变,这个就是 elasticsearch 与 mysql 之间的 数据同步 。 常见的数据同步方案有三种: 同步调用 异步通知 监听 binlog 1.1.同步调用 方案一:同步调用 基本步骤如下: hotel-demo 对外提

    2024年02月04日
    浏览(39)
  • SpringCloud:初识ES(ElasticSearch)

    1.1.1. ElasticSearch 的作用 ElasticSearch 是一款非常强大的开源搜索引擎,具备非常多强大功能,可以帮助我们从海量数据中快速找到需要的内容 例如: 在 GitHub 搜索代码 在百度搜索答案 1.1.2. ELK 技术栈 ElasticSearch 结合 kibana 、 Logstash 、 Beats ,也就是 elastic stack ( ELK )。被广泛

    2023年04月15日
    浏览(32)
  • SpringCloud学习笔记(十三)_Zipkin使用SpringCloud Stream以及Elasticsearch

    在前面的文章中,我们已经成功的使用Zipkin收集了项目的调用链日志。但是呢,由于我们收集链路信息时采用的是http请求方式收集的,而且链路信息没有进行保存,ZipkinServer一旦重启后就会所有信息都会消失了。基于性能的考虑,我们可以对它进行改造,使用SpringCloud Strea

    2024年02月04日
    浏览(40)
  • SpringCloud(十)——ElasticSearch简单了解(一)初识ElasticSearch和RestClient

    Elasticsearch 是一个分布式、高扩展、高实时的搜索与数据分析引擎。它能很方便的使大量数据具有搜索、分析和探索的能力。充分利用Elasticsearch的水平伸缩性,能使数据在生产环境变得更有价值。Elasticsearch 的实现原理主要分为以下几个步骤,首先用户将数据提交到Elasticsea

    2024年02月10日
    浏览(39)
  • SpringCloud实用篇5——elasticsearch基础

    1.1.1 elasticsearch的作用 elasticsearch是一款非常强大的 开源搜索引擎 ,具备非常多强大功能,可以帮助我们 从海量数据中快速找到需要的内容 例如: 在GitHub搜索代码 在电商网站搜索商品 在百度搜索答案 在打车软件搜索附近的车 1.1.2 ELK技术栈 elasticsearch结合kibana、Logstash、Be

    2024年02月13日
    浏览(42)
  • 【Springcloud】分布式搜索elasticsearch

    先看下翻译: elasticsearch是一款非常强大的 开源搜索引擎 ,可以帮助我们 从海量数据中快速找到需要的内容 以下是生活中ES的使用场景: 项目在运行的时候会产生海量的日志信息,而elasticsearch结合kibana、Logstash、Beats,也就是elastic stack( ELK ),即ELK技术栈。被广泛应用在

    2024年02月08日
    浏览(42)
  • SpringCloud实用篇7——深入elasticsearch

    聚合(aggregations) 可以让我们极其方便的实现对数据的统计、分析、运算。例如: 什么品牌的手机最受欢迎? 这些手机的平均价格、最高价格、最低价格? 这些手机每月的销售情况如何? 实现这些统计功能的比数据库的sql要方便的多,而且查询速度非常快,可以实现近实

    2024年02月12日
    浏览(27)
  • SpringCloud:ElasticSearch之索引库操作

    ElasticSearch 索引库就类似数据库表, mapping 映射就类似表的结构。 我们要向 ElasticSearch 中存储数据,必须先创建“库”和“表”。 mapping 是对索引库中文档的约束,常见的 mapping 属性包括: type :字段数据类型,常见的简单类型有: 字符串: text (可分词的文本)、 keyword

    2023年04月18日
    浏览(19)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包