9步搭建Windows下PaddleOCR图片文字识别WebAPI

这篇具有很好参考价值的文章主要介绍了9步搭建Windows下PaddleOCR图片文字识别WebAPI。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

本文实现在windows平台下依靠现有资源来搭建一个图片文字识别的WebAPI,便于其他项目通过Post方式将图片进行Base64编码后传到该API,能够得到图片中的文字信息

第一步:安装Python环境

第二步:安装 opencv-python

第三步:安装 paddleocr

第四步:安装 paddlepaddle 

 第五步:安装 Flask

 第六步:安装 DateTime

第七步:编写 PaddleOCR.py 文件,并放在D盘根目录中,文件内容如下:

第八步:启动API服务


本文实现在windows平台下依靠现有资源来搭建一个图片文字识别的WebAPI,便于其他项目通过Post方式将图片进行Base64编码后传到该API,能够得到图片中的文字信息

第一步:安装Python环境

我安装的是 python-3.8.8-amd64.exe 版本,不要用最新的版本,3.11的版本环境搭建不起来

双击进行安装,安装时勾选添加环境变量

接下来,打开cmd,安装依赖包,安装过程中用了国内的镜像,速度会快不少

第二步:安装 opencv-python
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple opencv-python
第三步:安装 paddleocr
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple paddleocr
第四步:安装 paddlepaddle 
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple paddlepaddle
 第五步:安装 Flask
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple Flask
 第六步:安装 DateTime
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple DateTime
第七步:编写 PaddleOCR.py 文件,并放在D盘根目录中,文件内容如下:
import io
from pickle import DICT
import paddleocr
import json
import base64
import DateTime
from flask import Flask, request,jsonify
import numpy as np
from PIL import Image
app=Flask(__name__)

@app.route("/WebAPI/PaddleOCR",methods=["POST"])
def PaddleOCR():
    if(request.data == "" or request.data.decode('utf-8') == ""):
        return "request data is empty"
    data=json.loads(request.data)
    imgbase64=data["image"]
    imgbyte=base64.b64decode(imgbase64)
    image=io.BytesIO(imgbyte)
    temp= Image.open(image)
    img=np.array(temp)[:,:,:3]
    info= ppocr.ocr(img)
    if(info[0] == None):
        return "ocr failed"
    result={"TextBlocks":[]}
    for textblocks in info[0]:
        textBlock={"Points":[],"Text":""}
        for tk in textblocks[0]:
            point={"x":str(tk[0]),"y":str(tk[1])}
            textBlock["Points"].append(point)
        textBlock["Text"]=textblocks[1][0]
        result["TextBlocks"].append(textBlock)
    return jsonify(result)

def main():
    global ppocr
    ppocr=paddleocr.PaddleOCR(use_gpu=False)
    app.run(debug=True,host="127.0.0.1",port=5000)
if __name__=="__main__":
    main()

其中  app.run(debug=True,host="127.0.0.1",port=5000) 指定了api的地址和端口

这个接口使用POST方式接收一个名称为image的参数,该参数里存的是需要被识别图片的Base64编码,返回的则是一个JSON格式的识别后的结果

第八步:启动API服务

打开cmd,定位到D盘,执行命令

python PaddleOCR.py

如果以上环境都已安装完毕,此时服务就能被顺利启动起来!

paddleocr api,c#,python,1024程序员节

第九步:编写客户端程序,测试图片文字识别服务是否有用!

测试程序使用c#编写,项目引用下Newtonsoft的包

httphelper代码里就提供一个post方法如下:

    public static class HttpHelper
    {
        /// <summary>
        /// post
        /// </summary>
        /// <param name="url"></param>
        /// <param name="joReq"></param>
        /// <param name="timeout"></param>
        /// <returns></returns>
        public static JObject Post(string url, JObject joReq, int timeout = 5)
        {
            JObject joAck;

            string result;
            try
            {
                result = Post(url, joReq.ToString(), timeout);
            }
            catch (Exception err)
            {
                joAck = new JObject();
                joAck["Code"] = -1;
                joAck["Msg"] = "无法连接到服务器,请联系开发人员 " + err;
                return joAck;
            }
            try
            {
                joAck = JObject.Parse(result);
                return joAck;
            }
            catch (Exception err)
            {
                joAck = new JObject();
                joAck["Code"] = -1;
                joAck["Msg"] = "json数据解析出错,请联系开发人员 " + err;
                return joAck;
            }
        }

        private static string Post(string url, string data, int timeout = 5)
        {
            byte[] byteArray = Encoding.UTF8.GetBytes(data);
            HttpWebRequest req = (HttpWebRequest)WebRequest.Create(url);
            req.Method = "POST";
            req.ContentLength = byteArray.Length;
            //连接超时时长有时不可控,即使未达到设置的时长,一旦整个路由都已经遍历,也会直接抛出异常
            req.Timeout = timeout * 1000;
            req.ReadWriteTimeout = timeout * 1000;
            using (Stream newStream = req.GetRequestStream())
            {
                newStream.Write(byteArray, 0, byteArray.Length);
            }
            HttpWebResponse response = (HttpWebResponse)req.GetResponse();
            using (StreamReader sr = new StreamReader(response.GetResponseStream(), Encoding.UTF8))
            {
                return sr.ReadToEnd(); // 返回的数据
            }
        }
    }

下面测试识别paddleocr api,c#,python,1024程序员节中的文字:

首先把该图片的Base64获取到:

/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/2wBDAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/wAARCAAjAKUDASIAAhEBAxEB/8QAGwABAAMBAQEBAAAAAAAAAAAAAAUGCQgHBAr/xAArEAABAwMDBAMAAQUBAAAAAAAGBAUHAAMIAQIWU1ST1AkRpCESEzV0tCP/xAAaAQEBAQEBAQEAAAAAAAAAAAAAAwQFAQYC/8QALREAAwEAAQIEBQIHAQAAAAAAAQIDBAAREgUTFFQVkZPR0iEjIiQxMjRBUXH/2gAMAwEAAhEDEQA/AP3lkBAqalVlMmsp9+m9Ptv799/bc3a/e65dt6bdulu7a+vr+1rrrrrru+/6tNNNNPr+YHmTp0EHiUe1Qy/ylj/Qtf8AQqrO1VcAW6xeuOoXBTi5uxjMzg4OJ+BQ0+kK68nnuVGWxduuR3OcXPd9LYQNCRCl26MLgis7Eutmw+X99u83NfcIy5sWWr5Eu9QQxLlD1/U9Se1uv/P6Dpzhg6tO3VJNbwSRBUBA46HoAAO5en/vU9eaJcydOgg8Sj2qcydOgg8Sj2qz+hBCnHJbv2A5yH0scn7RNJEmDh5uErFlldRk4ixybdVrgByjIoetUNzRLKgbQatTcEOOxiaGlO8tLijSjqhJxj8rvyOkWFLzD4cGSJiNH74T7bspPC3IjKRHET69isYP7cQkUUN8ZJMc56J3VuncHZpACRGUkqkFahOQWxC17SFQVLhYPNrzbwwxz2rmEl0aUzfpOtxLqWatmEUaryhBK6HWUqaarIwx59WymfNfO48TGi0JajQxgdBZnnFewBegLUYTQs7JMM9BJCwpWk4rSibn8ydOgg8Sj2qcydOgg8Sj2qwPg/5eEE6SZwm4d/HnG99idRVsTRkPZ3gM85H5GFxFEAOco4vx4j5wa8dI53NpQWyHZF47n9RMJyNlasIXN+6K29KZ8pj/ANPIfkUyVvO28lBvjWymuRZEhQdjOUdo4Ofj6HCsKTDwOnL078HO1n5DFTapVj+1SxrXUcfBzYymIWYWS8ekVk3DKRlPNdM3h0kFKRkJHN67zl/cgPDumIN4hTRJnhHJOniGSeh7UnTJ6nLbXOGXbhvpyz0eI2fy53dqCr5vKLCdjsQ7P5JIVCWtqouHQ2ecJ1XW06wyvbTn1QhtDzJ06CDxKPapzJ06CDxKParLN0+QFOlQY43C2KzDGR7nknOX7YKZMr4h3lLZj5DkQuM1StLu5uhKb5OZ2puSMVhlE0tt+Jkj8LkxIkVlwbZQprKV087xS+UFpyKm15i0ghvIWNrq6NsfiUYY3zDPNZqUCxfJ6STFpqyylJhTBQ7HoyMs+wWHEoocEdkHCiRZqT6DZUYp0O++2W+H4/OrmOea6pWlB8p/yA1lPlHyQxf+O09WMoQKy24dmW052j2tD4jsMY6V00fLeL3lqQhszpJ6rXtsB2N5SJLRRlJmMuzBpDmWyDPshzJ06CDxKPapzJ06CDxKParOvNPN0RxFSAjQrcYPQHMkb39YwrMkshGTFuCx4ZELjFZJiSRJqdw+RlQ9buOBONi4ixjccmxEVmRI0INrW1DKUqMBexTlmrEWKWNgbkbk6VxyCMhMoixhvaCcpDBCHOBhJqxpRbEMbyDIO2H0khjDKmWupjvI97GLui+NBh/NdBNHbb1LXZkM3hhla/lwEc+mGOtWPai6dDMkZBmIFC9UeJM+5UurQdlspQW9T4n5kJClzTTCumCKO5qQg3banRQSqz/ubv7SJkV6eWQ57y5k6dBB4lHtU5k6dBB4lHtVyZdy5xSsgrpKF3JvHvZGrI9IBt5kLdNEb7QdqI3UWbzhqH3Is3EujAhfHMKdmovbmlU4WVy0Xc25/TWLjStTK7nw4mZaQhmtCY1PUAmDSWBJFrdSqbCIgEX56En5NbsX1okaWgskK2lhLW9KsQLF7DceL6xIkcW9Re27bauzu3UXBhalZLnm1ITlW6AEtGd1k8XoAeqJVLRebN0DpaLL1Wsy0zv3BEodFAlWZJuSAtHU1DKhI6OymNgwXqVMqA9CjdOweZOnQQeJR7VOZOnQQeJR7VVKle/D8Xt5/I/fnnxDb7inzH25beZOnQQeJR7VOZOnQQeJR7VVKlPh+L28/kfvx8Q2+4p8x9uW3mTp0EHiUe1TmTp0EHiUe1VSpT4fi9vP5H78fENvuKfMfblt5k6dBB4lHtU5k6dBB4lHtVUqU+H4vbz+R+/HxDb7inzH25beZOnQQeJR7VKqVKfD8Xt5/I/fj4ht9xT5j7ctpl/lLH+ha/6FVZm3ZVE2eysZ7spDQ+vaTyc0ruz3pbahFY3rbuQ0tr7OxxZbmWkF306lQ1LG1dauqQ9ZdUN6pFd2EC1NusIWzUYmZnBwW2VCOzpe2bUu2zu/9bNvdt37Lt7f/Ol3fb+9NdLun1rt11/nTX700/j7rnGHzsf0o/Yrl9mfVhyTbZGDSBJDMhbr+o6FTRCpH9edQvpy7tVUyWstCACq0Ckfo3UMqOG/50/1+v8AvnBUTn4yYzIAIWU8HzNyaozyEVudloPm07WtSJxKcWbLVcX3kU3TvfbUzhfb3fa32lJS12lN1A4707BY3WlLi5cvfJXh1JeVBjDSEaJsuUowpd49Glm3G7IO9AIREe9rnqMpFNJ+lv7yDAnCQywaARNwZ8fm8Jh2SnUKN1D6RkKNxvKwVxAtluMPnY/pR+xTjD52P6UfsVpzTwwGIU15rnFvjvmGpJUo8X7vKqhox8qqF40abzui0Nc1s+lI3nmrXe1rWnkvJrRWR6xehXsZKToC0wpadpSr2OrxsEMNUtGWt4Vxxxkxmm2Dl8YSSXBpKYFaVJlcZyQ0JTpsJC5U9v7JBYDDo3bf5TmAqcHw0No5hFhuPLqXTIcJEBqodtxvL7xtvbjJ1p0q4v5o5FnjjMjQwxxjvGRSnY1ExYQnUmXn67m+iYEaS0DtWUEuRYDlzPikQguxJZYDRHj0qy2Fp6BEzXF0sERbGbK3DVvb/jD52P6UfsU4w+dj+lH7FaTfO1YXPiKmuTPhhjJtlZMx8NyQw47eUyGOto5s0EGfxGezCzxlobI2mU7JmSOqa3WeGkxq0bdGnsjoR7Hftp4jdEqrC2MjbRrx0eH0ybYMe2WpU/h5lJJ8FlmWRJDBuX4/GmPJkPEUqxXIhOQuOMcmEDFF7tAEyDCErjhI4O06RoUABDIx62WmZnkOM7JKQaJmxylaFmpoZkiJvhYXwtyTBswZilYozeyyKAF1FccLTctJB7ALYkmi6DL5fUlQCdIAjDwbJR8bGLJAz2EjkD7ItJXOyYu+toxe1LagvjWuvGHzsf0o/Ypxh87H9KP2KounElJ0TRnUyCds/UhodwpS9KHM9Gzl9Om1tOr9sJe1qd6mfbNYnJrZGRs127ySX9N0t2+SmaaC6yWwXPmlHPn6UDRlGYRgQzNnlkxBMxOU6w1lJj2GQPJMnxrG8wwm6guQJoYRgNqwCYVgGRrSMYkoJimcHZgJ2IjjJiblo/fjJwbTQTJSBEoJBlU1oNzlzaqwkymZ8NLOHbAT4+EIpHkUY1q4rdF++RQVe7zlFc5ay1IgqR3UTOftoFAKlmGQQLiK4OD5oXhiHV63PjMQJGtnRKtn+MPnY/pR+xTjD52P6UfsVENiWTRXZJU72eIF49Mxe/iO1hFT1RgfEvFdniZGhL/zrqSfToM/L9mzuVzioX/YNHOe3fdszYFi9Kf3hkx+HZvDP2Wkp8PDxK+YRVccEuGmSr9nQFZ4FW2Cx16bbLPFxLj2PyGfFsb7I5uAry1vGRTaZOMOhat7y+HXgldo7E3NfHTGxLMc9F8aqi5iVEyl0ZescE4glfHzGkDguXEUebHaJ9i4LGn2ODQkMG4zCW9TuvD5e+pyaOY7UhRS77FKjR5BW/nDSwbk9nRFIJJop37kvb3GHzsf0o/Ypxh87H9KP2KpK2CP6TvnC9twqnQpCto0Lsq4JoW7m2Pu0gFiiv4nrmEEJeHRwTpDdUlnhpZyuZGb07AsmSVs8EIEwoC56QiSqq7LizOzGr7Ka4GlT3GHzsf0o/Ypxh87H9KP2Kp6vJ7nP9af5c/HpNfttH0afjyBpU9xh87H9KP2KcYfOx/Sj9inq8nuc/1p/lx6TX7bR9Gn48gaVPcYfOx/Sj9inGHzsf0o/Yp6vJ7nP9af5cek1+20fRp+PIGlT3GHzsf0o/Ypxh87H9KP2Kerye5z/Wn+XHpNfttH0afjyBpU9xh87H9KP2KU9Xk9zn+tP8uPSa/baPo0/HnrVKUr4fn3HFKUpxxSlKccUpSnHFKUpxxSlKccUpSnHFKUpxxSlKccUpSnHFKUpxz/2Q==

然后通过POST方式提交到API获取识别结果:

JObject joReq = new JObject
            {
                ["image"] = "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/2wBDAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/wAARCAAjAKUDASIAAhEBAxEB/8QAGwABAAMBAQEBAAAAAAAAAAAAAAUGCQgHBAr/xAArEAABAwMDBAMAAQUBAAAAAAAGBAUHAAMIAQIWU1ST1AkRpCESEzV0tCP/xAAaAQEBAQEBAQEAAAAAAAAAAAAAAwQFAQYC/8QALREAAwEAAQIEBQIHAQAAAAAAAQIDBAAREgUTFFQVkZPR0iEjIiQxMjRBUXH/2gAMAwEAAhEDEQA/AP3lkBAqalVlMmsp9+m9Ptv799/bc3a/e65dt6bdulu7a+vr+1rrrrrru+/6tNNNNPr+YHmTp0EHiUe1Qy/ylj/Qtf8AQqrO1VcAW6xeuOoXBTi5uxjMzg4OJ+BQ0+kK68nnuVGWxduuR3OcXPd9LYQNCRCl26MLgis7Eutmw+X99u83NfcIy5sWWr5Eu9QQxLlD1/U9Se1uv/P6Dpzhg6tO3VJNbwSRBUBA46HoAAO5en/vU9eaJcydOgg8Sj2qcydOgg8Sj2qz+hBCnHJbv2A5yH0scn7RNJEmDh5uErFlldRk4ixybdVrgByjIoetUNzRLKgbQatTcEOOxiaGlO8tLijSjqhJxj8rvyOkWFLzD4cGSJiNH74T7bspPC3IjKRHET69isYP7cQkUUN8ZJMc56J3VuncHZpACRGUkqkFahOQWxC17SFQVLhYPNrzbwwxz2rmEl0aUzfpOtxLqWatmEUaryhBK6HWUqaarIwx59WymfNfO48TGi0JajQxgdBZnnFewBegLUYTQs7JMM9BJCwpWk4rSibn8ydOgg8Sj2qcydOgg8Sj2qwPg/5eEE6SZwm4d/HnG99idRVsTRkPZ3gM85H5GFxFEAOco4vx4j5wa8dI53NpQWyHZF47n9RMJyNlasIXN+6K29KZ8pj/ANPIfkUyVvO28lBvjWymuRZEhQdjOUdo4Ofj6HCsKTDwOnL078HO1n5DFTapVj+1SxrXUcfBzYymIWYWS8ekVk3DKRlPNdM3h0kFKRkJHN67zl/cgPDumIN4hTRJnhHJOniGSeh7UnTJ6nLbXOGXbhvpyz0eI2fy53dqCr5vKLCdjsQ7P5JIVCWtqouHQ2ecJ1XW06wyvbTn1QhtDzJ06CDxKPapzJ06CDxKParLN0+QFOlQY43C2KzDGR7nknOX7YKZMr4h3lLZj5DkQuM1StLu5uhKb5OZ2puSMVhlE0tt+Jkj8LkxIkVlwbZQprKV087xS+UFpyKm15i0ghvIWNrq6NsfiUYY3zDPNZqUCxfJ6STFpqyylJhTBQ7HoyMs+wWHEoocEdkHCiRZqT6DZUYp0O++2W+H4/OrmOea6pWlB8p/yA1lPlHyQxf+O09WMoQKy24dmW052j2tD4jsMY6V00fLeL3lqQhszpJ6rXtsB2N5SJLRRlJmMuzBpDmWyDPshzJ06CDxKPapzJ06CDxKParOvNPN0RxFSAjQrcYPQHMkb39YwrMkshGTFuCx4ZELjFZJiSRJqdw+RlQ9buOBONi4ixjccmxEVmRI0INrW1DKUqMBexTlmrEWKWNgbkbk6VxyCMhMoixhvaCcpDBCHOBhJqxpRbEMbyDIO2H0khjDKmWupjvI97GLui+NBh/NdBNHbb1LXZkM3hhla/lwEc+mGOtWPai6dDMkZBmIFC9UeJM+5UurQdlspQW9T4n5kJClzTTCumCKO5qQg3banRQSqz/ubv7SJkV6eWQ57y5k6dBB4lHtU5k6dBB4lHtVyZdy5xSsgrpKF3JvHvZGrI9IBt5kLdNEb7QdqI3UWbzhqH3Is3EujAhfHMKdmovbmlU4WVy0Xc25/TWLjStTK7nw4mZaQhmtCY1PUAmDSWBJFrdSqbCIgEX56En5NbsX1okaWgskK2lhLW9KsQLF7DceL6xIkcW9Re27bauzu3UXBhalZLnm1ITlW6AEtGd1k8XoAeqJVLRebN0DpaLL1Wsy0zv3BEodFAlWZJuSAtHU1DKhI6OymNgwXqVMqA9CjdOweZOnQQeJR7VOZOnQQeJR7VVKle/D8Xt5/I/fnnxDb7inzH25beZOnQQeJR7VOZOnQQeJR7VVKlPh+L28/kfvx8Q2+4p8x9uW3mTp0EHiUe1TmTp0EHiUe1VSpT4fi9vP5H78fENvuKfMfblt5k6dBB4lHtU5k6dBB4lHtVUqU+H4vbz+R+/HxDb7inzH25beZOnQQeJR7VKqVKfD8Xt5/I/fj4ht9xT5j7ctpl/lLH+ha/6FVZm3ZVE2eysZ7spDQ+vaTyc0ruz3pbahFY3rbuQ0tr7OxxZbmWkF306lQ1LG1dauqQ9ZdUN6pFd2EC1NusIWzUYmZnBwW2VCOzpe2bUu2zu/9bNvdt37Lt7f/Ol3fb+9NdLun1rt11/nTX700/j7rnGHzsf0o/Yrl9mfVhyTbZGDSBJDMhbr+o6FTRCpH9edQvpy7tVUyWstCACq0Ckfo3UMqOG/50/1+v8AvnBUTn4yYzIAIWU8HzNyaozyEVudloPm07WtSJxKcWbLVcX3kU3TvfbUzhfb3fa32lJS12lN1A4707BY3WlLi5cvfJXh1JeVBjDSEaJsuUowpd49Glm3G7IO9AIREe9rnqMpFNJ+lv7yDAnCQywaARNwZ8fm8Jh2SnUKN1D6RkKNxvKwVxAtluMPnY/pR+xTjD52P6UfsVpzTwwGIU15rnFvjvmGpJUo8X7vKqhox8qqF40abzui0Nc1s+lI3nmrXe1rWnkvJrRWR6xehXsZKToC0wpadpSr2OrxsEMNUtGWt4Vxxxkxmm2Dl8YSSXBpKYFaVJlcZyQ0JTpsJC5U9v7JBYDDo3bf5TmAqcHw0No5hFhuPLqXTIcJEBqodtxvL7xtvbjJ1p0q4v5o5FnjjMjQwxxjvGRSnY1ExYQnUmXn67m+iYEaS0DtWUEuRYDlzPikQguxJZYDRHj0qy2Fp6BEzXF0sERbGbK3DVvb/jD52P6UfsU4w+dj+lH7FaTfO1YXPiKmuTPhhjJtlZMx8NyQw47eUyGOto5s0EGfxGezCzxlobI2mU7JmSOqa3WeGkxq0bdGnsjoR7Hftp4jdEqrC2MjbRrx0eH0ybYMe2WpU/h5lJJ8FlmWRJDBuX4/GmPJkPEUqxXIhOQuOMcmEDFF7tAEyDCErjhI4O06RoUABDIx62WmZnkOM7JKQaJmxylaFmpoZkiJvhYXwtyTBswZilYozeyyKAF1FccLTctJB7ALYkmi6DL5fUlQCdIAjDwbJR8bGLJAz2EjkD7ItJXOyYu+toxe1LagvjWuvGHzsf0o/Ypxh87H9KP2KounElJ0TRnUyCds/UhodwpS9KHM9Gzl9Om1tOr9sJe1qd6mfbNYnJrZGRs127ySX9N0t2+SmaaC6yWwXPmlHPn6UDRlGYRgQzNnlkxBMxOU6w1lJj2GQPJMnxrG8wwm6guQJoYRgNqwCYVgGRrSMYkoJimcHZgJ2IjjJiblo/fjJwbTQTJSBEoJBlU1oNzlzaqwkymZ8NLOHbAT4+EIpHkUY1q4rdF++RQVe7zlFc5ay1IgqR3UTOftoFAKlmGQQLiK4OD5oXhiHV63PjMQJGtnRKtn+MPnY/pR+xTjD52P6UfsVENiWTRXZJU72eIF49Mxe/iO1hFT1RgfEvFdniZGhL/zrqSfToM/L9mzuVzioX/YNHOe3fdszYFi9Kf3hkx+HZvDP2Wkp8PDxK+YRVccEuGmSr9nQFZ4FW2Cx16bbLPFxLj2PyGfFsb7I5uAry1vGRTaZOMOhat7y+HXgldo7E3NfHTGxLMc9F8aqi5iVEyl0ZescE4glfHzGkDguXEUebHaJ9i4LGn2ODQkMG4zCW9TuvD5e+pyaOY7UhRS77FKjR5BW/nDSwbk9nRFIJJop37kvb3GHzsf0o/Ypxh87H9KP2KpK2CP6TvnC9twqnQpCto0Lsq4JoW7m2Pu0gFiiv4nrmEEJeHRwTpDdUlnhpZyuZGb07AsmSVs8EIEwoC56QiSqq7LizOzGr7Ka4GlT3GHzsf0o/Ypxh87H9KP2Kp6vJ7nP9af5c/HpNfttH0afjyBpU9xh87H9KP2KcYfOx/Sj9inq8nuc/1p/lx6TX7bR9Gn48gaVPcYfOx/Sj9inGHzsf0o/Yp6vJ7nP9af5cek1+20fRp+PIGlT3GHzsf0o/Ypxh87H9KP2Kerye5z/Wn+XHpNfttH0afjyBpU9xh87H9KP2KU9Xk9zn+tP8uPSa/baPo0/HnrVKUr4fn3HFKUpxxSlKccUpSnHFKUpxxSlKccUpSnHFKUpxxSlKccUpSnHFKUpxz/2Q==",
            };
            var result = HttpHelper.Post("http://127.0.0.1:5000/WebAPI/PaddleOCR", joReq, 10 * 1000);

运行代码,顺利获取到图片的文字内容:

paddleocr api,c#,python,1024程序员节文章来源地址https://www.toymoban.com/news/detail-840480.html

到了这里,关于9步搭建Windows下PaddleOCR图片文字识别WebAPI的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • PaddleOCR:超越人眼识别率的AI文字识别神器

    在当今人工智能技术已经渗透到各个领域。其中,OCR(Optical Character Recognition)技术将图像中的文字转化为可编辑的文本,为众多行业带来了极大的便利。PaddleOCR是一款由百度研发的OCR开源工具,具有极高的准确率和易用性。 本文将详细介绍PaddleOCR的基本原理、功能特点、使

    2024年02月03日
    浏览(44)
  • 百度飞桨(PaddlePaddle) - PaddleOCR 文字识别简单使用

    百度飞桨(PaddlePaddle)安装 OCR 文字检测(Differentiable Binarization --- DB) 百度飞桨(PaddlePaddle) - PP-OCRv3 文字检测识别系统 预测部署简介与总览 百度飞桨(PaddlePaddle) - PP-OCRv3 文字检测识别系统 Paddle Inference 模型推理(离线部署) 百度飞桨(PaddlePaddle) - PP-OCRv3 文字检测识别系统 基于

    2024年02月04日
    浏览(55)
  • Paddle笔记:PaddleOCR文字识别,简单实用,默认训练模型识别度不错

            PaddleOCR是百度深度学习框架PaddlePaddle开源的OCR项目,旨在打造一套丰富、领先、且实用的OCR工具库,助力使用者训练出更好的模型,并应用落地。PaddleOCR包含丰富的文本检测、文本识别以及端到端算法。         你可能用到的网址: Paddle官网:飞桨PaddlePaddle-源于

    2024年02月16日
    浏览(46)
  • python+paddleocr 进行图像识别、找到文字在屏幕中的位置

    目录 前言 1、安装paddleocr 2、安装PIL 3、安装numpy 4、 安装pyautogui 5、进行文本识别 6、识别结果 7、获取文字在图片/屏幕中的位置 8、pyautogui+paddleocr鼠标操作 9、完整代码 最近在做自动化测试,因为是处理过的界面,所以使用pywinauto,LDTP获取控件进行操作的方法不可行,于是选

    2024年02月03日
    浏览(50)
  • windows系统搭建OCR半自动标注工具PaddleOCR

    PaddleOCR是一个基于飞桨开发的OCR(Optical Character Recognition,光学字符识别)系统。其技术体系包括文字检测、文字识别、文本方向检测和图像处理等模块。 Windows和Mac用户推荐使用Anaconda搭建Python环境,Linux用户建议使用docker搭建Python环境。 已搭建过查看环境: 确认python的版本

    2024年04月17日
    浏览(44)
  • 【Python • 图片识别】pytesseract快速识别提取图片中的文字

    提示:本文多图,请手机端注意流量。 利用python做图片识别,识别提取图片中的文字会有很多方法,但是想要简单一点怎么办,那就可以使用tesseract识别引擎来实现,一行代码就可以做到提取图片文本。 本程序用到了两个python库,pytesseract和PIL,所以先来安装。 运行以下命

    2024年02月02日
    浏览(43)
  • python-图片文字识别

    两种方法 1. 第一种方法 2. 第二种方法

    2024年02月15日
    浏览(47)
  • 识别图片中的文字

    PearOCR 是一款免费无限制网页版文字识别工具。 优点如下: 免费:完全免费,没有任何次数、大小限制,可以无限使用; 安全:全部数据本地运算,所有图片均不会被上传; 智能:基于深度学习训练得到的模型,拥有强大的识别能力; 易用:无需安装,即点即用,支持识别

    2024年02月11日
    浏览(48)
  • 华为手机怎么识别提取图片文字?APP一键识别

    平时我们用手机会接触到形形色色的图片文件,其中有一部分保存着咱们需要的文字信息。如果我们是华为手机怎么识别提取图片文字呢?给大伙介绍两种方式,有同样需求的小伙伴接着往下浏览吧。 1.“智慧识屏” 华为手机自带的“智慧识屏”可以实现识别提取图片文字,

    2024年02月12日
    浏览(56)
  • 使用python进行图片的文字识别

    Tesseract OCR 是一款由 Google 团队开发的开源 OCR(Optical Character Recognition,光学字符识别)引擎,用于将图片、PDF 等格式中的文本转换为可编辑的文本格式。自 1985 年首次发布以来,它已经经历了多个版本和改进,并成为目前最受欢迎的 OCR 引擎之一。 Tesseract OCR 支持多种语言,

    2024年02月09日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包