论文笔记 Where Would I Go Next? Large Language Models as Human Mobility Predictor

这篇具有很好参考价值的文章主要介绍了论文笔记 Where Would I Go Next? Large Language Models as Human Mobility Predictor。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

arxiv 2023 08的论文

1 intro

1.1 人类流动性的独特性

  • 人类流动性的独特特性在于其固有的规律性、随机性以及复杂的时空依赖性
    • ——>准确预测人们的行踪变得困难
  • 近期的研究利用深度学习模型的时空建模能力实现了更好的预测性能
    • 但准确性仍然不足,且产生的结果不能直接完全解释

1.2 本文

论文笔记 Where Would I Go Next? Large Language Models as Human Mobility Predictor,论文笔记,论文阅读,语言模型,人工智能

  • LMM+位置预测
    • 提出了一个名为LLM-Mob的框架
      • 将流动性数据组织成历史停留和上下文停留,以解释人们移动中的长期和短期依赖性
      • 利用目标停留的时间信息进行时间感知预测
      • 设计了有效的prompt策略来帮助LLM理解流动性数据,最大化它们的推理能力,使预测结果的解释成为可能。

2 Preliminary

2.1 术语和符号

  • 用户的轨迹被表示为一系列停留,一个停留被表示为 (st, dow, dur, pid)
    • st 表示停留开始的时间,dow 表示星期几,dur 表示停留的持续时间,pid 表示停留发生地点的唯一标识符。
    • 一个停留的例子可以是 (17:30, 星期二, 35分钟, 地点1),表示用户在星期二的17:30到18:05期间停留在地点1。

2.2 问题定义(next-location prediction)

  • 给定一个用户到时间 n 为止的停留序列 S = (Sn−Q+1, ..., Sn),目标是预测用户在下一个时间步骤将要访问的下一个位置/地点(即 pidn+1)

3 模型

3.1 数据整体

论文笔记 Where Would I Go Next? Large Language Models as Human Mobility Predictor,论文笔记,论文阅读,语言模型,人工智能

3.2 数据格式化

论文笔记 Where Would I Go Next? Large Language Models as Human Mobility Predictor,论文笔记,论文阅读,语言模型,人工智能

3.3 任务独特的prompt

论文笔记 Where Would I Go Next? Large Language Models as Human Mobility Predictor,论文笔记,论文阅读,语言模型,人工智能

4 实验

4.1  数据集和预处理

  • Geolife、纽约Foursquare 数据集(FSQ-NYC)

论文笔记 Where Would I Go Next? Large Language Models as Human Mobility Predictor,论文笔记,论文阅读,语言模型,人工智能

  • 预处理步骤,包括过滤记录很少的用户、处理原始轨迹成停留点,将数据集分为训练和测试集

4.2 实验细节

  • 使用的特定 LLM 是 GPT-3.51( gpt-3.5-turbo-0613)
  • 将温度设置为 0 以避免输出中的随机性
  • 史停留点 M 的长度和上下文停留点 N 的长度分别设置为 40 和 5

4.3 评估指标

  • 准确率(Accuracy)。
    • 预测按照成为下一个位置的概率降序排列,Acc@k 衡量真实位置出现在前k个预测中的比例。
    • 报告了 Acc@1、Acc@5 和 Acc@10 以进行比较
  • 加权F1分数(Weighted F1)
    • 个人访问位置的次数高度不平衡,一些位置出现的频率比其他位置更高。
    • 使用按访问次数加权的 F1 分数来强调模型在更重要位置的性能
  • nDCG@k
    • 归一化折扣累积增益(normalized discounted cumulative gain,简称 nDCG,以排名位置k为基准)
    • 通过折扣累积增益(DCG)与理想折扣累积增益(IDCG)之比来衡量预测向量的质量
    • 论文笔记 Where Would I Go Next? Large Language Models as Human Mobility Predictor,论文笔记,论文阅读,语言模型,人工智能
      • rj​ 表示位置j的相关性值。
        • 在位置预测的上下文中,rj​∈{0,1},并且当且仅当排名预测向量中的第j个项目对应于真实的下一个位置时,rj​=1

4.4 实验结果

论文笔记 Where Would I Go Next? Large Language Models as Human Mobility Predictor,论文笔记,论文阅读,语言模型,人工智能

论文笔记 Where Would I Go Next? Large Language Models as Human Mobility Predictor,论文笔记,论文阅读,语言模型,人工智能

论文笔记 Where Would I Go Next? Large Language Models as Human Mobility Predictor,论文笔记,论文阅读,语言模型,人工智能

5 讨论

5.1 LLM-Mob 为什么表现得如此出色?

论文笔记 Where Would I Go Next? Large Language Models as Human Mobility Predictor,论文笔记,论文阅读,语言模型,人工智能文章来源地址https://www.toymoban.com/news/detail-840708.html

  • 论文测试了 LLM 在三个逐步任务上的性能,以展示论文认为对成功预测人类移动性至关重要的其能力的不同方面
  • 表 5 中展示的结果显示 LLM 在所有三个任务中都做得非常好
    • 生成数字和结构化输入的自然语言描述
    • 总结用户的活动模式
    • 以及对用户的家庭和工作场所进行推断
  • 这显示了三个主要能力:
    • 不仅能理解自然语言,还能理解如代表轨迹的数字列表这样的结构化数字输入
    • 总结历史移动性/活动模式的能力,以便模型能有效地利用过去的信息来预测未来情况
    • 强大的推理能力,意味着模型可以像人类一样“思考”并做出合理的推断
  • 除了 LLM 本身的能力外,LLM-Mob 的成功还在于数据的有效格式化和实用的提示工程,其中提示已通过迭代测试仔细设计和改进

5.2 限制

  • 效率问题。
    • 对每个测试样本独立调用 OpenAI API,这种做法效率低下,难以应用于大规模预测
  • 幻觉问题
    • 这是 LLM 面临的一个常见问题。
    • 如表 4 中标记为蓝色的声明所示,模型声明地点 1 是一家餐厅,这是虚构的,可能会误导用户
  • 来自专有 LLM 的限制
    • 首先,调用 OpenAI API 需要花费金钱,当数据量大时,成本可能会很高
    • 此外,OpenAI 不断更新 GPT 模型系列,导致最新模型的性能漂移
      • 在旧模型上表现良好的提示可能在新模型上不起作用,需要在提示工程上做额外工作

到了这里,关于论文笔记 Where Would I Go Next? Large Language Models as Human Mobility Predictor的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 《LORA: LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS》论文笔记

    全量参数微调在LLM背景下由“不方便”演变为“不可行|高昂成本”,基于“收敛的模型参数可以压缩到低维空间”的假设: the learned over-parametrized models in fact reside on a low intrinsic dimension. 作者提出LORA(Low Rank Adaptation)方法,其本质如下图所示: h = W x h = Wx h = W x ,其中 x x

    2024年02月13日
    浏览(43)
  • Unifying Large Language Models and Knowledge Graphs: A Roadmap 论文阅读笔记

    NLP, LLM, Generative Pre-training, KGs, Roadmap, Bidirectional Reasoning LLMs are black models and can\\\'t capture and access factual knowledge. KGs are structured knowledge models that explicitly store rich factual knowledge. The combinations of KGs and LLMs have three frameworks,  KG-enhanced LLMs, pre-training and inference stages to provide external knowl

    2024年02月19日
    浏览(47)
  • 论文笔记:Evaluating the Performance of Large Language Models on GAOKAO Benchmark

    采用zero-shot prompting的方式,将试题转化为ChatGPT的输入 对于数学题,将公式转化为latex输入  主观题由专业教师打分 2010~2022年,一共13年间的全国A卷和全国B卷

    2024年03月15日
    浏览(54)
  • [论文阅读笔记77]LoRA:Low-Rank Adaptation of Large Language Models

    题目 论文作者与单位 来源 年份 LoRA: Low-Rank Adaptation of Large Language Models microsoft International Conference on Learning Representations 2021 524 Citations 论文链接:https://arxiv.org/pdf/2106.09685.pdf 论文代码:https://github.com/microsoft/LoRA 研究主题 问题背景 核心方法流程 亮点 数据集 结论 论文类型 关

    2024年02月06日
    浏览(55)
  • 论文笔记:A Simple and Effective Pruning Approach for Large Language Models

    iclr 2024 reviewer 评分 5668 大模型网络剪枝的paper 在努力保持性能的同时,舍弃网络权重的一个子集 现有方法 要么需要重新训练 这对于十亿级别的LLMs来说往往不现实 要么需要解决依赖于二阶信息的权重重建问题 这同样可能带来高昂的计算成本 ——引入了一种新颖、简单且有

    2024年04月17日
    浏览(43)
  • 论文笔记:Time-LLM: Time Series Forecasting by Reprogramming Large Language Models

    iclr 2024 reviewer 评分 3888 提出了 Time-LLM, 是一个通用的大模型重编程(LLM Reprogramming)框架 将 LLM 轻松用于一般时间序列预测,而无需对大语言模型本身做任何训练 为什么需要时序数据和文本数据对齐:时序数据和文本数据在表达方式上存在显著差异,两者属于不同的模态。

    2024年04月28日
    浏览(75)
  • [论文阅读笔记] TRACE: A Comprehensive Benchmark for Continual Learning In Large Language Models

    TRACE: A Comprehensive Benchmark for Continual Learning In Large Language Models arXiv2023 复旦大学 Benchmark、Continual Learing、LLMs 已经对齐过的大模型 (Aligned LLMs )能力很强,但持续学习能力缺乏关注; 目前CL的benchmark对于顶尖的LLMs来说过于简单,并且在指令微调存在model的potential exposure。(这里的

    2024年01月18日
    浏览(61)
  • 【论文笔记】A Survey of Large Language Models in Medicine - Progress, Application, and Challenges

    将LLMs应用于医学,以协助医生和病人护理,成为人工智能和临床医学领域的一个有前景的研究方向。为此, 本综述提供了医学中LLMs当前进展、应用和面临挑战的全面概述 。 具体来说,旨在回答以下问题: 1)什么是LLMs,如何构建医学LLMs? 2)医学LLMs的下游表现如何? 3)

    2024年02月03日
    浏览(46)
  • 论文阅读 A Survey of Large Language Models 3

    为了检验LLM的有效性和优越性,大量的任务和基准被用来进行实证评估和分析。我们首先介绍了LLM语言生成和理解的三种基本评估任务,然后介绍了LLM具有更复杂设置或目标的几个高级任务,最后讨论了现有的基准和实证分析。 在这一部分中,我们主要关注LLM的三种评估任务

    2024年02月13日
    浏览(48)
  • 论文翻译 - Visual Adversarial Examples Jailbreak Large Language Models

    论文链接:https://arxiv.org/pdf/2306.13213.pdf 项目代码:https://github.com/Unispac/Visual-Adversarial-Examples-Jailbreak-Large-Language-Models 最近,人们对将视觉集成到大型语言模型 (LLM) 中的兴趣激增,例如 Flaminggo 和 GPT-4 等视觉语言模型 (VLM)。本文阐明了这一趋势的安全性和安全性影响。首先,

    2024年03月10日
    浏览(57)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包