分析基于解析物理模型的E模式p沟道GaN高电子迁移率晶体管(H-FETs)

这篇具有很好参考价值的文章主要介绍了分析基于解析物理模型的E模式p沟道GaN高电子迁移率晶体管(H-FETs)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

来源:Analyzing E-Mode p-Channel GaN H-FETs Using an Analytic Physics-Based Compact Mode(TED 24年)

摘要

随着近期对用于GaN互补技术集成电路(ICs)开发的p沟道GaN器件研究兴趣的激增,一套全面的模型对于加速器件设计至关重要。本文提出了一种解析模型,用于理解GaN p沟道场效应晶体管(p-FET)的电流-电压(I-V)特性。该模型基于基于物理的静电学表达式,自洽求解薛定谔-泊松方程,并结合费米-狄拉克统计以及二维电子气(2DHG)的二维态密度(2D-DOS)。此外,该模型还利用漂移-扩散机制来描述空穴传输,并通过涵盖增强模式和耗尽模式GaN p-FET的实验数据进行了验证。

我们进一步利用所开发的基于物理的模型深入分析了器件性能及各种器件特性,包括阈值电压与p-GaN区域内的器件尺寸和掺杂浓度之间的关系。这一模型特点尤为宝贵,因为它有助于设备优化。因此,代工厂的工艺工程师在开发p沟道GaN FET时,可以利用我们的模型来改进他们的制造工艺。

关键词:互补FET、漂移-扩散、GaN、p沟道、基于物理的模型、薛定谔-泊松。
分析基于解析物理模型的E模式p沟道GaN高电子迁移率晶体管(H-FETs),文献阅读,器件建模

分析基于解析物理模型的E模式p沟道GaN高电子迁移率晶体管(H-FETs),文献阅读,器件建模

文章的研究内容

文章《使用解析物理基础紧凑模型分析E模式GaN p沟道H-FETs》介绍了为加速GaN互补技术集成电路(IC)中p沟道GaN器件设计而开发的一个全面的分析模型。该模型主要用于理解和预测GaN p沟道场效应晶体管(p-FET)的电流-电压(I-V)特性。模型基于电静力学的物理表达,自洽求解薛定谔-泊松方程,并结合了费米-狄拉克统计及二维电子态密度(2D-DOS),用于描述二维空穴气(2DHG)。同时利用漂移-扩散机制来考虑空穴的传输行为,并通过与包含增强模式和耗尽模式两种类型GaN p-FET实验数据的对比验证了模型的有效性。

此外,作者进一步运用所建立的物理基础模型深入分析了器件性能以及不同设备参数如阈值电压等与p-GaN区域内的器件尺寸和掺杂浓度的关系,这有助于优化器件设计。因此,制造厂中的工艺工程师可以应用这一模型改进他们在研发p沟道GaN FET时的生产工艺流程。

该研究提供了一个基于物理原理的解析模型,以解决当前对p沟道GaN器件在开发GaN互补电路方面的高度关注问题,并助力于提高相关器件的设计效率与性能表现。

文章的创新点

文章《使用解析物理基础紧凑模型分析E模式GaN p沟道H-FETs》的创新点在于提出了一个针对GaN p沟道场效应晶体管(p-FET)设计的新型、全面且基于物理原理的解析模型。该模型的独特之处体现在以下几个方面:

  1. 自洽解决电荷分布问题:模型基于薛定谔-泊松方程的自洽求解,用于计算二维空穴气(2DHG)中的电荷密度,这在理解器件内部复杂的量子力学现象上具有重要意义。

  2. 考虑统计学和能态密度:模型整合了费米-狄拉克统计以及二维密度态(2D-DOS),从而准确描述二维空穴系统的性质。

  3. 漂移-扩散机制的应用:利用漂移-扩散机制来模拟空穴的传输行为,以更精确地预测器件的电流-电压特性。

  4. 全面性与可扩展性:模型能够对不同结构参数如通道层厚度、栅氧化层厚度及掺杂浓度变化下的器件性能进行全面分析,并已通过对比实验数据验证其有效性,表明该模型适用于多种结构条件下的GaN p-FET分析。

  5. 优化工具价值:首次提供了基于物理理论的GaN p沟道高电子迁移率晶体管(HFET)的解析模型,这对于深入分析和优化GaN p沟道器件至关重要,进而有助于推动全GaN互补集成电路的发展。

本文所提出的模型是目前GaN p沟道FET领域的一个重要突破,它为工艺工程师提供了一种强大的工具,用以改进制造过程并优化此类器件的设计,填补了之前在这方面研究的空白。

文章的研究方法

  1. 物理模型构建:基于GaN p沟道场效应晶体管(p-FET)的器件结构和电荷分布特性,研究者建立了一个解析物理学模型。该模型以二维空穴气(2DHG)为基础,通过求解薛定谔-泊松方程来计算二维电子态密度(2D-DOS),并结合了费米-狄拉克统计理论。

  2. 电静力学分析与电荷密度计算:首先对器件的电荷分布和静电势进行分析,确定各个区域的能带结构,并计算出在不同电压偏置和结构参数下2DHG中的电荷密度。

  3. 载流子传输机制:采用漂移-扩散理论描述空穴在器件内的输运过程,这有助于理解电流如何随电压变化而变化,从而形成I-V特性曲线。

  4. 阈值电压及器件性能分析:利用所建模型分析了阈值电压以及其他关键器件特性(如电容-电压C-V特性、有效质量等)与设备尺寸、p-GaN区域掺杂浓度之间的关系,为优化器件设计提供了理论依据。

  5. 验证与应用:将模型预测结果与实验数据进行了对比验证,涵盖了增强模式和耗尽模式两种GaN p-FET,确保模型的准确性和适用性。此外,还展示了模型如何应用于不同结构条件下的GaN p-FET分析,包括调整材料参数(如极化电荷密度、介电常数、Mg掺杂浓度、外扩分量和层厚度)以适应各种结构验证。

研究方法主要围绕构建一个全面的、基于物理原理的GaN p沟道FET解析模型,并利用这一模型深入探讨和预测器件的关键性能指标,最终目的是加速GaN互补技术集成电路的设计进程和提高器件性能。

文章的研究结论

  1. 作者成功开发了一个基于物理学的解析模型,用于精确预测和理解GaN p沟道场效应晶体管(p-FET)的电流-电压特性。该模型综合考虑了二维空穴气的电荷分布计算、薛定谔-泊松方程自洽求解以及费米-狄拉克统计,并利用漂移-扩散机制来描述空穴在器件中的传输行为。

  2. 文中提出的模型经过与实验数据对比验证,在涵盖增强模式和耗尽模式两种类型的GaN p-FET上显示出良好的一致性,证明了模型的有效性和准确性。

  3. 利用这一物理模型,研究者深入探讨了器件性能参数如阈值电压等与p-GaN区域的几何尺寸和掺杂浓度之间的关系,这对于优化器件设计和工艺制程至关重要。

  4. 结论指出,该模型能够为半导体制造厂的工艺工程师提供有力工具,帮助他们在研发p沟道GaN FET时改进制造过程,促进GaN互补技术集成电路的发展。

本文通过构建并验证一个全面的、基于物理学原理的GaN p沟道FET解析模型,不仅加深了对这类器件工作机理的理解,而且为推动GaN互补电路的实际应用提供了实用的设计与优化手段。文章来源地址https://www.toymoban.com/news/detail-840787.html

到了这里,关于分析基于解析物理模型的E模式p沟道GaN高电子迁移率晶体管(H-FETs)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 基于Tensorflow的最基本GAN网络模型

    视频链接:https://www.bilibili.com/video/BV1f7411E7wU/?spm_id_from=333.999.0.0

    2023年04月14日
    浏览(32)
  • [架构之路-236]:目标系统 - 纵向分层 - 数据库 - 数据库系统基础与概述:三阶段模型(概念模型、逻辑模型、物理模型)、三级模式结构(外模式、模式、内模式)

    目录 一、数据库设计阶段性模型:概念模型、逻辑模型、物理模型 1.1 概念模型(Conceptual Model)- 业务模型: 实体:entity 属性或特征: key键值/码: 域(Domain): 实体类型:entity type 实体集合: 联系: 1.2 逻辑模型(Logical Model)- 内存模型(最核心): 1.3 物理模型(Phys

    2024年02月02日
    浏览(63)
  • Android源码解析--享元设计模式,handler消息传递机制(基于Android API 33 SDK分析)

    使用共享对象可有效地支持大量的细粒度的对象 核心:对象复用。 1.1 享元模式Demo 火车票购票Demo 缓存对象在一个Map中。下面我们还会分析 用法 跟进去 这就是最明显的一个享元设计模式。 Android 开发一个知识点:UI 不能够在子线程中更新。 我们跟进post函数 Handler 传递了一个

    2024年02月11日
    浏览(35)
  • Unity3D 实现基于物理引擎的绳子关节解析详解

    在游戏开发中,有时候我们需要实现绳子关节效果,比如在射击游戏中射击绳子,或者在平衡游戏中使用绳子作为支撑。本文将详细介绍如何使用Unity3D的物理引擎实现绳子关节效果。 对惹,这里有一 个游戏开发交流小组 ,希望大家可以点击进来一起交流一下开发经验呀 首

    2024年02月21日
    浏览(90)
  • 【CVPR 2023的AIGC应用汇总(4)】图像恢复,基于GAN生成对抗/diffusion扩散模型方法...

    【CVPR 2023的AIGC应用汇总(1)】图像转换/翻译,基于GAN生成对抗/diffusion扩散模型方法 【CVPR 2023的AIGC应用汇总(2)】可控文生图,基于diffusion扩散模型/GAN生成对抗方法 【CVPR 2023的AIGC应用汇总(3)】GAN改进/可控生成的方法10篇 本文研究JPEG图像恢复问题,即加密比特流中的比特错误。

    2024年02月06日
    浏览(91)
  • 基于ROS的机器人模型建立及3D仿真【物理/机械意义】

    在前面的博客中,我们已经学习过了如何对目标机器人进行数学意义上的模型建立,以便实现基础控制,而在实际生活中,由于机器人造价高昂,我们往往难以获得实际的目标机器人进行部署研究,这就需要我们对目标进行仿真,采用编程或可视化方法建立机器人3D模型,从

    2024年02月09日
    浏览(68)
  • MOS管工作区间及开通过程分析——以N沟道增强型MOS为例

    N沟道增强型MOS管的结构如图1所示,P型衬底上制作两个高掺杂的N区,引出作为漏极D和源极S,衬底上再制作一块绝缘层,绝缘层上在制作一层金属电极,引出作为栅极G,即构成了常见的N沟道增强型MOS管。一般而言,衬底B和S极会连在一起,当在栅极处加正电压时,靠近衬底的

    2024年02月09日
    浏览(40)
  • 电子技术——BJT的物理结构

    本节我们介绍另一种基本三端元件,BJT。 下图展示了NPN型和PNP型BJT的物理结构简图。 从图中看出,BJT主要由三个区域组成,发射极(n类型),基极(p类型),集电极(n类型)。这样的BJT称为npn BJT。另外一种对偶元件是pnp BJT。 BJT是一个三端元件,具有 发射极E 和 基极B 和

    2023年04月14日
    浏览(42)
  • 设计模式深度解析:AI大模型下的策略模式与模板方法模式对比解析

    ​🌈 个人主页: danci_ 🔥 系列专栏: 《设计模式》《MYSQL应用》 💪🏻 制定明确可量化的目标,坚持默默的做事。 策略模式与模板方法模式对比解析         在人工智能的世界里,设计模式不仅是构建高效、可维护代码的秘密武器,也是理解和掌握大模型内在机制的钥

    2024年04月08日
    浏览(80)
  • 【光波电子学】基于MATLAB的多模光纤模场分布的仿真分析

    (1)多模光纤的概念 多模光纤(MMF)是一种具有较大纤芯直径的光纤结构,其核心直径通常在10-50微米范围内。与单模光纤(SMF)相比,多模光纤可以容纳多个光信号模式传播,因此在许多应用中具有广泛的用途。 多模光纤的工作原理基于多个光模式在纤芯中的传播。每个

    2024年01月16日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包