ina219简介
INA219可用于测量电压、电流、功率,通过IIC输出结果。
引脚定义
IN+和IN-:分别是接检测分流电阻的两端。接线时与想要检测的负载串联,该芯片检测的电压为IN-和GND的电压差,因此接线时应该IN+接电源正极,从IN-流入负载,负载再接GND
GND:接电源负极,注意共地
Vs:传感器供电正极(电压范围:3-5.5V)
SCL:通讯时钟线
SDA:通讯数据线
A0和A1:地址选择引脚(IIC通讯时的从机地址)
传感器定义
INA219共有6个寄存器
00:配置寄存器,主要是用来配置INA219的工作方式和参数
01:分流电阻两端的电压
02:总线电压(IN-和GND的电压差)
03:功率
04:电流
05:基准值寄存器,用于设置基准值
寄存器具体内容可以参考其他博客和ina219参考手册,写得很具体了
INA219例程
INA219参考手册
使用前配置
INA219使用前需要对00配置寄存器以及05基准值寄存器进行配置
- 00寄存器bit13:设置检测最大检测电压 0=16V,1=32V
- 00寄存器bit11-12:设置总线分流电阻最大的电压
- 00寄存器bit0-2:设置工作模式
- 05寄存器:设置基准值
05寄存器的基准值可以通过以下公式得到:
我使用的ina219是这个
分流电阻两端最大电压设置为320mv,分流电阻阻值为0.1Ω
因此最大能检测电流大小为0.32V/0.1Ω=3.2A
Current_LSB_MIN=I_MAX/(2^ 15)=3.2/32767=0.00009766
Current_LSB_MAX=I_MAX/(2^ 12)=3.2/4096=0.00078125
因此这里选择了Current_LSB = 0.0001A
可以计算得到cal = 0.04096/(0.0001*0.1) = 4096 = 0x1000
但是这样配置完后发现测量到的电流值不对,很多博客也没有提到这个问题,最后翻看官方手册,发现还有Cal的校准公式
用电流表测到的实际值为0.290A,传感器接收到的为0.342A,
校准后的cal=4096*0.290/0.3421 = 3472 = 0x0D90
设置后的测量值正确文章来源:https://www.toymoban.com/news/detail-841035.html
代码例程
代码基于stm32,iic是通过模拟iic实现,PB13为SCL口,PB12为SDA口文章来源地址https://www.toymoban.com/news/detail-841035.html
#include "ina219.h"
#include "SysTick.h"
u8 ina219_busVolt_LSB_mV = 4; // Bus Voltage LSB value = 4mV
u8 ina219_shuntVolt_LSB_uV = 10; // Shunt Voltage LSB value = 10uV
unsigned short ina219_calValue = 0;
u32 ina219_current_LSB_uA;
u32 ina219_power_LSB_mW;
INA219_DATA ina219_data;
u8 ram_for_ina219[60];
u8 INA219process_flag;
#define Open 1
#define Close 0
void INA_SCL_OUT(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
RCC_APB2PeriphClockCmd(INA219_I2C_GPIO_CLOCK, ENABLE);
/* Configure I2C1 pins: PB12->SCL->OUT */
GPIO_InitStructure.GPIO_Pin = INA219_I2C_SCL_PIN;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_Init(INA219_I2C_PORT, &GPIO_InitStructure);
GPIO_SetBits(INA219_I2C_PORT, INA219_I2C_SCL_PIN);
}
void INA_SDA_OUT(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
RCC_APB2PeriphClockCmd(INA219_I2C_GPIO_CLOCK, ENABLE);
/* Configure I2C1 pins: PB14->SDA-OUT */
GPIO_InitStructure.GPIO_Pin = INA219_I2C_SDA_PIN;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_Init(INA219_I2C_PORT, &GPIO_InitStructure);
GPIO_SetBits(INA219_I2C_PORT, INA219_I2C_SDA_PIN);
}
void INA_SDA_IN(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
RCC_APB2PeriphClockCmd(INA219_I2C_GPIO_CLOCK, ENABLE);
/* Configure I2C1 pins: PB14->SDA-IN */
GPIO_InitStructure.GPIO_Pin = INA219_I2C_SDA_PIN;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
GPIO_Init(INA219_I2C_PORT, &GPIO_InitStructure);
}
void INA_IIC_Start(void)
{
INA_SDA_OUT();
INA_SCL_OUT();
INA_SDA_SET;
INA_SCL_SET;
INA_SDA_CLR;
INA_SCL_CLR;
}
void INA_IIC_Stop(void)
{
INA_SDA_OUT();
INA_SDA_CLR;
INA_SCL_SET;
INA_SDA_SET;
}
void INA_IIC_Set_Ack(unsigned char ack)
{
INA_SDA_OUT();
if(ack)
{
INA_SDA_SET;
}
else
{
INA_SDA_CLR;
}
INA_SCL_SET;
INA_SCL_CLR;
}
unsigned char INA_IIC_Get_Ack(void)
{
unsigned char ack;
INA_SDA_IN();
INA_SDA_SET;
INA_SCL_SET;
if(INA_SDA_TST)
{
ack = 1;
}
else
{
ack = 0;
}
INA_SCL_CLR;
return(ack);
}
void INA_IIC_Write_8bits(unsigned char dat)
{
unsigned char i;
INA_SDA_OUT();
for(i = 8; i; i--)
{
if(dat & 0x80)
{
INA_SDA_SET;
}
else
{
INA_SDA_CLR;
}
INA_SCL_SET;
dat <<= 1;
INA_SCL_CLR;
}
}
unsigned char INA_IIC_Read_8bits(void)
{
unsigned char i, dat;
INA_SDA_IN();
INA_SDA_SET;
dat = 0;
for(i = 8; i; i--)
{
INA_SCL_SET;
dat <<= 1;
if(INA_SDA_TST)
dat++;
INA_SCL_CLR;
}
return(dat);
}
void INA_IIC_Write_Byte(unsigned char reg, unsigned char dat)
{
unsigned char dev = INA219_I2C_ADDRESS;
INA_IIC_Start();
// dev &= ~0x01;
INA_IIC_Write_8bits(dev);
INA_IIC_Get_Ack();
INA_IIC_Write_8bits(reg);
INA_IIC_Get_Ack();
INA_IIC_Write_8bits(dat);
INA_IIC_Get_Ack();
INA_IIC_Stop();
}
unsigned char INA_IIC_Read_Byte(unsigned char reg)
{
unsigned char dat;
unsigned char dev = INA219_I2C_ADDRESS;
INA_IIC_Start();
// dev &= ~0x01;
INA_IIC_Write_8bits(dev);
INA_IIC_Get_Ack();
INA_IIC_Write_8bits(reg);
INA_IIC_Get_Ack();
INA_IIC_Start();
dev |= 0x01;
INA_IIC_Write_8bits(dev);
INA_IIC_Get_Ack();
dat = INA_IIC_Read_8bits();
INA_IIC_Set_Ack(1);
INA_IIC_Stop();
return (dat);
}
void INA_IIC_Write_Bytes(unsigned char reg, unsigned char *dat, unsigned char num)
{
unsigned char dev = INA219_I2C_ADDRESS;
INA_IIC_Start();
// dev &= ~0x01;
INA_IIC_Write_8bits(dev);
INA_IIC_Get_Ack();
INA_IIC_Write_8bits(reg);
INA_IIC_Get_Ack();
while(num--)
{
INA_IIC_Write_8bits(*dat);
INA_IIC_Get_Ack();
dat++;
}
INA_IIC_Stop();
}
void INA_IIC_Read_Bytes(unsigned char reg, unsigned char *dat, unsigned char num)
{
unsigned char *tmp = dat;
unsigned char dev = INA219_I2C_ADDRESS;
INA_IIC_Start();
// dev &= ~0x01;
INA_IIC_Write_8bits(dev);
INA_IIC_Get_Ack();
INA_IIC_Write_8bits(reg);
INA_IIC_Get_Ack();
INA_IIC_Start();
dev |= 0x01;
INA_IIC_Write_8bits(dev);
INA_IIC_Get_Ack();
while(num--)
{
*tmp = INA_IIC_Read_8bits();
if(num == 0)
INA_IIC_Set_Ack(1);
else
INA_IIC_Set_Ack(0);
tmp++;
}
INA_IIC_Stop();
}
void ina219_Write_Register(unsigned char reg, unsigned int dat)
{
unsigned char val[2];
val[0] = (unsigned char)(dat >> 8);
val[1] = (unsigned char)(dat & 0xFF);
INA_IIC_Write_Bytes(reg, val, 2);
}
void ina219_Read_Register(unsigned char reg, signed short *dat)
{
//printf("read reg == %d\r\n",reg);
unsigned char val[2];
INA_IIC_Read_Bytes(reg, val, 2);
*dat = ((unsigned int)(val[0]) << 8) + val[1];
//printf("data1 == %x\r\n",val[0]);
//printf("data2 == %x\r\n",val[1]);
}
// INA219 Set Calibration 16V/16A(Max) 0.02|?
void ina219_SetCalibration_16V_16A(void)
{
u16 configValue;
// By default we use a pretty huge range for the input voltage,
// which probably isn't the most appropriate choice for system
// that don't use a lot of power. But all of the calculations
// are shown below if you want to change the settings. You will
// also need to change any relevant register settings, such as
// setting the VBUS_MAX to 16V instead of 32V, etc.
// VBUS_MAX = 16V (Assumes 16V, can also be set to 32V)
// VSHUNT_MAX = 0.32 (Assumes Gain 8, 320mV, can also be 0.16, 0.08, 0.04)
// RSHUNT = 0.02 (Resistor value in ohms)
// 1. Determine max possible current
// MaxPossible_I = VSHUNT_MAX / RSHUNT
// MaxPossible_I = 16A
// 2. Determine max expected current
// MaxExpected_I = 16A
// 3. Calculate possible range of LSBs (Min = 15-bit, Max = 12-bit)
// MinimumLSB = MaxExpected_I/32767
// MinimumLSB = 0.00048 (0.48mA per bit)
// MaximumLSB = MaxExpected_I/4096
// MaximumLSB = 0,00390 (3.9mA per bit)
// 4. Choose an LSB between the min and max values
// (Preferrably a roundish number close to MinLSB)
// CurrentLSB = 0.00050 (500uA per bit)
// 5. Compute the calibration register
// Cal = trunc (0.04096 / (Current_LSB * RSHUNT))
// Cal = 4096 (0x1000)
ina219_calValue = 0x0D90; //0x1000;
// 6. Calculate the power LSB
// PowerLSB = 20 * CurrentLSB
// PowerLSB = 0.01 (10mW per bit)
// 7. Compute the maximum current and shunt voltage values before overflow
//
// Max_Current = Current_LSB * 32767
// Max_Current = 16.3835A before overflow
//
// If Max_Current > Max_Possible_I then
// Max_Current_Before_Overflow = MaxPossible_I
// Else
// Max_Current_Before_Overflow = Max_Current
// End If
//
// Max_ShuntVoltage = Max_Current_Before_Overflow * RSHUNT
// Max_ShuntVoltage = 0.32V
//
// If Max_ShuntVoltage >= VSHUNT_MAX
// Max_ShuntVoltage_Before_Overflow = VSHUNT_MAX
// Else
// Max_ShuntVoltage_Before_Overflow = Max_ShuntVoltage
// End If
// 8. Compute the Maximum Power
// MaximumPower = Max_Current_Before_Overflow * VBUS_MAX
// MaximumPower = 1.6 * 16V
// MaximumPower = 256W
// Set multipliers to convert raw current/power values
ina219_current_LSB_uA = 100; // Current LSB = 500uA per bit
ina219_power_LSB_mW = 2; // Power LSB = 10mW per bit = 20 * Current LSB
// Set Calibration register to 'Cal' calculated above
ina219_Write_Register(INA219_REG_CALIBRATION, ina219_calValue);
// Set Config register to take into account the settings above
configValue = ( INA219_CFG_BVOLT_RANGE_16V | INA219_CFG_SVOLT_RANGE_320MV | INA219_CFG_BADCRES_12BIT_16S_8MS | INA219_CFG_SADCRES_12BIT_16S_8MS | INA219_CFG_MODE_SANDBVOLT_CONTINUOUS );
ina219_Write_Register(INA219_REG_CONFIG, configValue);
}
void ina219_configureRegisters(void)
{
delay_ms(15);
ina219_SetCalibration_16V_16A();
}
void ina219_gpio_init(void)
{
INA_SCL_OUT();
INA_SDA_OUT();
}
void ina219_init(void)
{
ina219_gpio_init();
ina219_configureRegisters();
}
signed short ina219_GetBusVoltage_raw(void)
{
signed short val;
ina219_Read_Register(INA219_REG_BUSVOLTAGE, &val);
val >>= 3; // Shift to the right 3 to drop CNVR and OVF
return (val);
}
signed short ina219_GetCurrent_raw(void)
{
signed short val;
// Sometimes a sharp load will reset the INA219, which will
// reset the cal register, meaning CURRENT and POWER will
// not be available ... avoid this by always setting a cal
// value even if it's an unfortunate extra step
ina219_Write_Register(INA219_REG_CALIBRATION, ina219_calValue);
// Now we can safely read the CURRENT register!
ina219_Read_Register(INA219_REG_CURRENT, &val);
return (val);
}
signed short ina219_GetBusVoltage_mV(void)
{
signed short val;
ina219_Read_Register(INA219_REG_BUSVOLTAGE, &val);
val >>= 3; // Shift to the right 3 to drop CNVR and OVF
val *= ina219_busVolt_LSB_mV; // multiply by LSB(4mV)
return (val);
}
s32 ina219_GetShuntVoltage_uV(void)
{
s32 val;
s16 reg;
ina219_Read_Register(INA219_REG_SHUNTVOLTAGE, ®);
val = (s32)reg * ina219_shuntVolt_LSB_uV; // multiply by LSB(10uV)
return (val);
}
s32 ina219_GetCurrent_uA(void)
{
s32 val;
s16 reg;
// Sometimes a sharp load will reset the INA219, which will
// reset the cal register, meaning CURRENT and POWER will
// not be available ... avoid this by always setting a cal
// value even if it's an unfortunate extra step
ina219_Write_Register(INA219_REG_CALIBRATION, ina219_calValue);
// Now we can safely read the CURRENT register!
ina219_Read_Register(INA219_REG_CURRENT, ®);
val = (s32)reg * ina219_current_LSB_uA;
return (val);
}
s32 ina219_GetPower_mW(void)
{
s32 val;
s16 reg;
// Sometimes a sharp load will reset the INA219, which will
// reset the cal register, meaning CURRENT and POWER will
// not be available ... avoid this by always setting a cal
// value even if it's an unfortunate extra step
ina219_Write_Register(INA219_REG_CALIBRATION, ina219_calValue);
// Now we can safely read the POWER register!
ina219_Read_Register(INA219_REG_POWER, ®);
val = (s32)reg * ina219_power_LSB_mW;
return (val);
}
void INA_Process(void)
{
if(1)
{
//INA219process_flag = Close;
ina219_data.voltage_ina219 = ina219_GetBusVoltage_mV();
// printf("voltage_ina219 is %d\r\n",ina219_data.voltage_ina219);
ina219_data.shunt_ina219 = ina219_GetShuntVoltage_uV();
// printf("shunt_ina219 is %ld\r\n",ina219_data.shunt_ina219);
ina219_data.current_ina219 = ina219_GetCurrent_uA();
// printf("current_ina219 is %ld\r\n",ina219_data.current_ina219);
ina219_data.power_ina219 = ina219_GetPower_mW();
// printf("power_ina219 is %ld\r\n",ina219_data.power_ina219);
}
}
#ifndef __INA219_H
#define __INA219_H
#include "stm32f10x.h"
#include "stm32f10x_gpio.h"
#include "stm32f10x_rcc.h"
#define INA219_I2C_PORT GPIOB
#define INA219_I2C_GPIO_CLOCK RCC_APB2Periph_GPIOB
#define INA219_I2C_SCL_PIN GPIO_Pin_13
#define INA219_I2C_SDA_PIN GPIO_Pin_12
#define INA_SCL_SET GPIO_SetBits(INA219_I2C_PORT,INA219_I2C_SCL_PIN)
#define INA_SDA_SET GPIO_SetBits(INA219_I2C_PORT, INA219_I2C_SDA_PIN)
#define INA_SCL_CLR GPIO_ResetBits(INA219_I2C_PORT,INA219_I2C_SCL_PIN)
#define INA_SDA_CLR GPIO_ResetBits(INA219_I2C_PORT,INA219_I2C_SDA_PIN)
#define INA_SDA_TST GPIO_ReadInputDataBit(INA219_I2C_PORT,INA219_I2C_SDA_PIN)
/*----------------------------------------------------------------------------*/
// I2C Address Options
#define INA219_I2C_ADDRESS_CONF_0 (u8)(0x40 << 1) // A0 = GND, A1 = GND
#define INA219_I2C_ADDRESS_CONF_1 (u8)(0x41 << 1) // A0 = VS+, A1 = GND
#define INA219_I2C_ADDRESS_CONF_2 (u8)(0x42 << 1) // A0 = SDA, A1 = GND
#define INA219_I2C_ADDRESS_CONF_3 (u8)(0x43 << 1) // A0 = SCL, A1 = GND
#define INA219_I2C_ADDRESS_CONF_4 (u8)(0x44 << 1) // A0 = GND, A1 = VS+
#define INA219_I2C_ADDRESS_CONF_5 (u8)(0x45 << 1) // A0 = VS+, A1 = VS+
#define INA219_I2C_ADDRESS_CONF_6 (u8)(0x46 << 1) // A0 = SDA, A1 = VS+
#define INA219_I2C_ADDRESS_CONF_7 (u8)(0x47 << 1) // A0 = SCL, A1 = VS+
#define INA219_I2C_ADDRESS_CONF_8 (u8)(0x48 << 1) // A0 = GND, A1 = SDA
#define INA219_I2C_ADDRESS_CONF_9 (u8)(0x49 << 1) // A0 = VS+, A1 = SDA
#define INA219_I2C_ADDRESS_CONF_A (u8)(0x4A << 1) // A0 = SDA, A1 = SDA
#define INA219_I2C_ADDRESS_CONF_B (u8)(0x4B << 1) // A0 = SCL, A1 = SDA
#define INA219_I2C_ADDRESS_CONF_C (u8)(0x4C << 1) // A0 = GND, A1 = SCL
#define INA219_I2C_ADDRESS_CONF_D (u8)(0x4D << 1) // A0 = VS+, A1 = SCL
#define INA219_I2C_ADDRESS_CONF_E (u8)(0x4E << 1) // A0 = SDA, A1 = SCL
#define INA219_I2C_ADDRESS_CONF_F (u8)(0x4F << 1) // A0 = SCL, A1 = SCL
#define INA219_I2C_ADDRESS INA219_I2C_ADDRESS_CONF_0
/*----------------------------------------------------------------------------*/
// Register Addresses
#define INA219_REG_CONFIG (u8)(0x00) // CONFIG REGISTER (R/W)
#define INA219_REG_SHUNTVOLTAGE (u8)(0x01) // SHUNT VOLTAGE REGISTER (R)
#define INA219_REG_BUSVOLTAGE (u8)(0x02) // BUS VOLTAGE REGISTER (R)
#define INA219_REG_POWER (u8)(0x03) // POWER REGISTER (R)
#define INA219_REG_CURRENT (u8)(0x04) // CURRENT REGISTER (R)
#define INA219_REG_CALIBRATION (u8)(0x05) // CALIBRATION REGISTER (R/W)
/*----------------------------------------------------------------------------*/
// Macros for assigning config bits
#define INA219_CFGB_RESET(x) (u16)((x & 0x01) << 15) // Reset Bit
#define INA219_CFGB_BUSV_RANGE(x) (u16)((x & 0x01) << 13) // Bus Voltage Range
#define INA219_CFGB_PGA_RANGE(x) (u16)((x & 0x03) << 11) // Shunt Voltage Range
#define INA219_CFGB_BADC_RES_AVG(x) (u16)((x & 0x0F) << 7) // Bus ADC Resolution/Averaging
#define INA219_CFGB_SADC_RES_AVG(x) (u16)((x & 0x0F) << 3) // Shunt ADC Resolution/Averaging
#define INA219_CFGB_MODE(x) (u16) (x & 0x07) // Operating Mode
/*----------------------------------------------------------------------------*/
// Configuration Register
#define INA219_CFG_RESET INA219_CFGB_RESET(1) // Reset Bit
#define INA219_CFG_BVOLT_RANGE_MASK INA219_CFGB_BUSV_RANGE(1) // Bus Voltage Range Mask
#define INA219_CFG_BVOLT_RANGE_16V INA219_CFGB_BUSV_RANGE(0) // 0-16V Range
#define INA219_CFG_BVOLT_RANGE_32V INA219_CFGB_BUSV_RANGE(1) // 0-32V Range (default)
#define INA219_CFG_SVOLT_RANGE_MASK INA219_CFGB_PGA_RANGE(3) // Shunt Voltage Range Mask
#define INA219_CFG_SVOLT_RANGE_40MV INA219_CFGB_PGA_RANGE(0) // Gain 1, 40mV Range
#define INA219_CFG_SVOLT_RANGE_80MV INA219_CFGB_PGA_RANGE(1) // Gain 2, 80mV Range
#define INA219_CFG_SVOLT_RANGE_160MV INA219_CFGB_PGA_RANGE(2) // Gain 4, 160mV Range
#define INA219_CFG_SVOLT_RANGE_320MV INA219_CFGB_PGA_RANGE(3) // Gain 8, 320mV Range (default)
#define INA219_CFG_BADCRES_MASK INA219_CFGB_BADC_RES_AVG(15) // Bus ADC Resolution and Averaging Mask
#define INA219_CFG_BADCRES_9BIT_1S_84US INA219_CFGB_BADC_RES_AVG(0) // 1 x 9-bit Bus sample
#define INA219_CFG_BADCRES_10BIT_1S_148US INA219_CFGB_BADC_RES_AVG(1) // 1 x 10-bit Bus sample
#define INA219_CFG_BADCRES_11BIT_1S_276US INA219_CFGB_BADC_RES_AVG(2) // 1 x 11-bit Bus sample
#define INA219_CFG_BADCRES_12BIT_1S_532US INA219_CFGB_BADC_RES_AVG(3) // 1 x 12-bit Bus sample (default)
#define INA219_CFG_BADCRES_12BIT_2S_1MS INA219_CFGB_BADC_RES_AVG(9) // 2 x 12-bit Bus samples averaged together
#define INA219_CFG_BADCRES_12BIT_4S_2MS INA219_CFGB_BADC_RES_AVG(10) // 4 x 12-bit Bus samples averaged together
#define INA219_CFG_BADCRES_12BIT_8S_4MS INA219_CFGB_BADC_RES_AVG(11) // 8 x 12-bit Bus samples averaged together
#define INA219_CFG_BADCRES_12BIT_16S_8MS INA219_CFGB_BADC_RES_AVG(12) // 16 x 12-bit Bus samples averaged together
#define INA219_CFG_BADCRES_12BIT_32S_17MS INA219_CFGB_BADC_RES_AVG(13) // 32 x 12-bit Bus samples averaged together
#define INA219_CFG_BADCRES_12BIT_64S_34MS INA219_CFGB_BADC_RES_AVG(14) // 64 x 12-bit Bus samples averaged together
#define INA219_CFG_BADCRES_12BIT_128S_68MS INA219_CFGB_BADC_RES_AVG(15) // 128 x 12-bit Bus samples averaged together
#define INA219_CFG_SADCRES_MASK INA219_CFGB_SADC_RES_AVG(15) // Shunt ADC Resolution and Averaging Mask
#define INA219_CFG_SADCRES_9BIT_1S_84US INA219_CFGB_SADC_RES_AVG(0) // 1 x 9-bit Shunt sample
#define INA219_CFG_SADCRES_10BIT_1S_148US INA219_CFGB_SADC_RES_AVG(1) // 1 x 10-bit Shunt sample
#define INA219_CFG_SADCRES_11BIT_1S_276US INA219_CFGB_SADC_RES_AVG(2) // 1 x 11-bit Shunt sample
#define INA219_CFG_SADCRES_12BIT_1S_532US INA219_CFGB_SADC_RES_AVG(3) // 1 x 12-bit Shunt sample (default)
#define INA219_CFG_SADCRES_12BIT_2S_1MS INA219_CFGB_SADC_RES_AVG(9) // 2 x 12-bit Shunt samples averaged together
#define INA219_CFG_SADCRES_12BIT_4S_2MS INA219_CFGB_SADC_RES_AVG(10) // 4 x 12-bit Shunt samples averaged together
#define INA219_CFG_SADCRES_12BIT_8S_4MS INA219_CFGB_SADC_RES_AVG(11) // 8 x 12-bit Shunt samples averaged together
#define INA219_CFG_SADCRES_12BIT_16S_8MS INA219_CFGB_SADC_RES_AVG(12) // 16 x 12-bit Shunt samples averaged together
#define INA219_CFG_SADCRES_12BIT_32S_17MS INA219_CFGB_SADC_RES_AVG(13) // 32 x 12-bit Shunt samples averaged together
#define INA219_CFG_SADCRES_12BIT_64S_34MS INA219_CFGB_SADC_RES_AVG(14) // 64 x 12-bit Shunt samples averaged together
#define INA219_CFG_SADCRES_12BIT_128S_68MS INA219_CFGB_SADC_RES_AVG(15) // 128 x 12-bit Shunt samples averaged together
#define INA219_CFG_MODE_MASK INA219_CFGB_MODE(7) // Operating Mode Mask
#define INA219_CFG_MODE_POWERDOWN INA219_CFGB_MODE(0) // Power-Down
#define INA219_CFG_MODE_SVOLT_TRIGGERED INA219_CFGB_MODE(1) // Shunt Voltage, Triggered
#define INA219_CFG_MODE_BVOLT_TRIGGERED INA219_CFGB_MODE(2) // Bus Voltage, Triggered
#define INA219_CFG_MODE_SANDBVOLT_TRIGGERED INA219_CFGB_MODE(3) // Shunt and Bus, Triggered
#define INA219_CFG_MODE_ADCOFF INA219_CFGB_MODE(4) // ADC Off (disabled)
#define INA219_CFG_MODE_SVOLT_CONTINUOUS INA219_CFGB_MODE(5) // Shunt Voltage, Continuous
#define INA219_CFG_MODE_BVOLT_CONTINUOUS INA219_CFGB_MODE(6) // Bus Voltage, Continuous
#define INA219_CFG_MODE_SANDBVOLT_CONTINUOUS INA219_CFGB_MODE(7) // Shunt and Bus, Continuous (default)
/*----------------------------------------------------------------------------*/
// Bus Voltage Register
#define INA219_BVOLT_CNVR (u16)(0x0002) // Conversion Ready
#define INA219_BVOLT_OVF (u16)(0x0001) // Math Overflow Flag
typedef struct
{
signed short voltage_ina219;
signed long shunt_ina219;
signed long current_ina219;
signed long power_ina219;
}INA219_DATA;
extern u8 ina219_busVolt_LSB_mV;
extern u8 ina219_shuntVolt_LSB_uV;
extern unsigned short ina219_calValue;
extern u32 ina219_current_LSB_uA;
extern u32 ina219_power_LSB_mW;
extern void ina219_init(void);
extern void INA_Process(void);
extern signed short ina219_GetBusVoltage_raw(void);
extern signed short ina219_GetCurrent_raw(void);
extern signed short ina219_GetBusVoltage_mV(void);
extern s32 ina219_GetShuntVoltage_uV(void);
extern s32 ina219_GetCurrent_uA(void);
extern s32 ina219_GetPower_mW(void);
#endif
到了这里,关于INA219例程,可校准电流值误差(基于stm32)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!