机器学习 --- 模型评估、选择与验证

这篇具有很好参考价值的文章主要介绍了机器学习 --- 模型评估、选择与验证。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Java实训代码、答案,如果能够帮到您,希望可以点个赞!!! 

如果有问题可以csdn私聊或评论!!!感谢您的支持

第1关:为什么要有训练集与测试集

机器学习 --- 模型评估、选择与验证,机器学习,人工智能,深度学习

1、下面正确的是?( D

A、将手头上所有的数据拿来训练模型,预测结果正确率最高的模型就是我们所要选的模型。

B、将所有数据中的前百分之70拿来训练模型,剩下的百分之30作为测试集,预测结果正确率最高的模型就是我们所要选的模型。

C、将所有数据先随机打乱顺序,一半用来训练模型,一半作为测试集,预测结果正确率最高的模型就是我们所要选的模型。

D、将所有数据先随机打乱顺序,百分之80用来训练模型,剩下的百分之20作为测试集,预测结果正确率最高的模型就是我们所要选的模型。

2、训练集与测试集的划分对最终模型的确定有无影响?( A )

A、有

B、无

第2关:欠拟合与过拟合

机器学习 --- 模型评估、选择与验证,机器学习,人工智能,深度学习

1、请问,图中A与B分别处于什么状态?( B

机器学习 --- 模型评估、选择与验证,机器学习,人工智能,深度学习

A、欠拟合,欠拟合

B、欠拟合,过拟合

C、过拟合,欠拟合

D、过拟合,过拟合

2、如果一个模型在训练集上正确率为99%,测试集上正确率为60%。我们应该怎么做?( ABD )

A、加入正则化项

B、增加训练样本数量

C、增加模型复杂度

D、减少模型复杂度

第3关:偏差与方差

机器学习 --- 模型评估、选择与验证,机器学习,人工智能,深度学习

如果一个模型,它在训练集上正确率为85%,测试集上正确率为80%,则模型是过拟合还是欠拟合?其中,来自于偏差的误差为?来自方差的误差为?( B

A、欠拟合,5%,5%

B、欠拟合,15%,5%

C、过拟合,15%,15%

D、过拟合,5%,5%

第4关:验证集与交叉验证

机器学习 --- 模型评估、选择与验证,机器学习,人工智能,深度学习

1、假设,我们现在利用5折交叉验证的方法来确定模型的超参数,一共有4组超参数,我们可以知道,5折交叉验证,每一组超参数将会得到5个子模型的性能评分,假设评分如下,我们应该选择哪组超参数?( D

A、子模型1:0.8 子模型2:0.7 子模型3:0.8 子模型4:0.6 子模型5:0.5

B、子模型1:0.9 子模型2:0.7 子模型3:0.8 子模型4:0.6 子模型5:0.5

C、子模型1:0.5 子模型2:0.6 子模型3:0.7 子模型4:0.6 子模型5:0.5

D、子模型1:0.8 子模型2:0.8 子模型3:0.8 子模型4:0.8 子模型5:0.6

2、下列说法正确的是?( BCD )

A、相比自助法,在初始数据量较小时交叉验证更常用。

B、自助法对集成学习方法有很大的好处

C、使用交叉验证能够增加模型泛化能力

D、在数据难以划分训练集测试集时,可以使用自助法

第5关:衡量回归的性能指标

机器学习 --- 模型评估、选择与验证,机器学习,人工智能,深度学习

下列说法正确的是?( AB )

A、相比MSE指标,MAE对噪声数据不敏感

B、RMSE指标值越小越好

C、R-Squared指标值越小越好

D、当我们的模型不犯任何错时,R-Squared值为0

第6关:准确度的陷阱与混淆矩阵

机器学习 --- 模型评估、选择与验证,机器学习,人工智能,深度学习

import numpy as np

def confusion_matrix(y_true, y_predict):
    '''
    构建二分类的混淆矩阵,并将其返回
    :param y_true: 真实类别,类型为ndarray
    :param y_predict: 预测类别,类型为ndarray
    :return: shape为(2, 2)的ndarray
    '''

    #********* Begin *********#
    def TN(y_true, y_predict):
        return np.sum((y_true == 0) & (y_predict == 0))
    def FP(y_true, y_predict):
        return np.sum((y_true == 0) & (y_predict == 1))
    def FN(y_true, y_predict):
        return np.sum((y_true == 1) & (y_predict == 0))
    def TP(y_true, y_predict):
        return np.sum((y_true == 1) & (y_predict == 1))
    return np.array([
        [TN(y_true, y_predict), FP(y_true, y_predict)],
        [FN(y_true, y_predict), TP(y_true, y_predict)]
    ])
    #********* End *********#

第7关:精准率与召回率 

机器学习 --- 模型评估、选择与验证,机器学习,人工智能,深度学习

import numpy as np

def precision_score(y_true, y_predict):
    '''
    计算精准率并返回
    :param y_true: 真实类别,类型为ndarray
    :param y_predict: 预测类别,类型为ndarray
    :return: 精准率,类型为float
    '''

    #********* Begin *********#
    def TP(y_true, y_predict):
        return np.sum((y_true ==1)&(y_predict == 1))
    def FP(y_true,y_predict):
        return np.sum((y_true ==0)&(y_predict==1))
    tp =TP(y_true, y_predict)
    fp =FP(y_true, y_predict)
    try:
        return tp /(tp+fp)
    except:
        return 0.0
    #********* End *********#


def recall_score(y_true, y_predict):
    '''
    计算召回率并召回
    :param y_true: 真实类别,类型为ndarray
    :param y_predict: 预测类别,类型为ndarray
    :return: 召回率,类型为float
    '''

    #********* Begin *********#
    def FN(y_true, y_predict):
        return np.sum((y_true ==1)&(y_predict == 0))
    def TP(y_true,y_predict):
        return np.sum((y_true ==1)&(y_predict==1))
    fn =FN(y_true, y_predict)
    tp =TP(y_true, y_predict)
    try:
        return tp /(tp+fn)
    except:
        return 0.0

    
    #********* End *********#

第8关:F1 Score 

机器学习 --- 模型评估、选择与验证,机器学习,人工智能,深度学习

import numpy as np

def f1_score(precision, recall):
    '''
    计算f1 score并返回
    :param precision: 模型的精准率,类型为float
    :param recall: 模型的召回率,类型为float
    :return: 模型的f1 score,类型为float
    '''

    #********* Begin *********#
    try:
        return 2*precision*recall / (precision+recall)
    except:
        return 0.0
    #********* End ***********#

第9关:ROC曲线与AUC 

机器学习 --- 模型评估、选择与验证,机器学习,人工智能,深度学习

import numpy as np

def calAUC(prob, labels):
    '''
    计算AUC并返回
    :param prob: 模型预测样本为Positive的概率列表,类型为ndarray
    :param labels: 样本的真实类别列表,其中1表示Positive,0表示Negtive,类型为ndarray
    :return: AUC,类型为float
    '''

    #********* Begin *********#
    a= list(zip(prob,labels))
    rank =[values2 for values1,values2 in sorted(a, key=lambda x:x[0])]
    rankList=[i+1 for i in range(len(rank))if rank[i] ==1]
    posNum =0
    negNum =0
    for i in range(len(labels)):
        if(labels[i]==1):
            posNum+=1
        else:
            negNum+=1
    auc= (sum(rankList)-(posNum*(posNum+1))/2)/(posNum*negNum)
    return auc       
    #********* End *********#

第10关:sklearn中的分类性能指标 

机器学习 --- 模型评估、选择与验证,机器学习,人工智能,深度学习文章来源地址https://www.toymoban.com/news/detail-841092.html

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score

def classification_performance(y_true, y_pred, y_prob):
    '''
    返回准确度、精准率、召回率、f1 Score和AUC
    :param y_true:样本的真实类别,类型为`ndarray`
    :param y_pred:模型预测出的类别,类型为`ndarray`
    :param y_prob:模型预测样本为`Positive`的概率,类型为`ndarray`
    :return:
    '''

    #********* Begin *********#
    return accuracy_score(y_true, y_pred),precision_score(y_true, y_pred),recall_score(y_true, y_pred),f1_score(y_true, y_pred),roc_auc_score(y_true, y_prob)
    #********* End *********#

到了这里,关于机器学习 --- 模型评估、选择与验证的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 模型训练:优化人工智能和机器学习,完善DevOps工具的使用

    作者:JFrog大中华区总经理董任远 据说法餐的秘诀在于黄油、黄油、更多的黄油。同样,对于DevOps而言,成功的三大秘诀是自动化、自动化、更高程度的自动化,而这一切归根结底都在于构建能够更快速地不断发布新版软件的流程。 尽管人们认为在人工智能(AI)和机器学习

    2024年02月10日
    浏览(42)
  • 探索人工智能 | 模型训练 使用算法和数据对机器学习模型进行参数调整和优化

    模型训练是指 使用算法和数据对机器学习模型进行参数调整和优化 的过程。模型训练一般包含以下步骤:数据收集、数据预处理、模型选择、模型训练、模型评估、超参数调优、模型部署、持续优化。 数据收集是指为机器学习或数据分析任务收集和获取用于训练或分析的数

    2024年02月12日
    浏览(59)
  • 机器学习基础07-模型选择01-利用scikit-learn 基于Pima 数据集对LogisticRegression算法进行评估

    选择合适的模型是机器学习和深度学习中非常重要的一步,它直接影响到模型的性能和泛化能力。 “所有模型都是坏的,但有些模型是有用的”。建立模型之后就要去评 估模型,确定模型是否有用。模型评估是模型开发过程中不可或缺的一部 分,有助于发现表达数据的最佳

    2024年02月14日
    浏览(46)
  • 打造你的专属大模型,学完即可使用上岗!技术人的大模型课程(人工智能/机器学习/深度学习)

    技术人的大模型课 让一部分人在大模型时代,先拥抱AI,为编程专家开启AI新篇章 在2024年,大模型不再是可选技能,而是技术行业的必备。你是否曾在夜深人静时想象,从一名代码专家转型为AI行业的引领者? 如果你的答案是肯定的,那么这门课程正是为你量身定制, 针对

    2024年04月27日
    浏览(49)
  • 机器学习模型的可解释性:增加对人工智能系统的信任和理解

            为了以道德和值得信赖的方式使用人工智能,研究人员必须继续创建平衡模型复杂性和易于解释的方法。         机器学习模型在各个领域的使用都取得了重大进展,包括自然语言处理、生成式人工智能和自主系统等。另一方面,随着模型复杂性和规模的增加

    2024年02月13日
    浏览(44)
  • 精华整理几十个Python数据科学、机器学习、深度学习、神经网络、人工智能方面的核心库以及详细使用实战案例,轻松几行代码训练自己的专有人工智能模型

    精华整理几十个Python数据科学、机器学习、深度学习、神经网络、人工智能方面的核心库以及详细使用实战案例,轻松几行代码训练自己的专有人工智能模型。 机器学习 人工智能的核心,是使计算机具有智能的根本途径。机器学习专注于算法,允许机器学习而不需要编程,

    2024年01月25日
    浏览(78)
  • 基于深度学习的人工智能安全:威胁检测、攻击防御和安全评估

    作者:禅与计算机程序设计艺术 随着人工智能技术的不断发展,给社会带来的影响越来越大。越来越多的企业和个人都依赖于AI产品或服务,同时也面临着各种各样的安全风险,比如身份验证缺失、数据泄露、恶意软件等。如何保障AI产品及服务的安全,成为当前和未来的重

    2024年02月13日
    浏览(56)
  • 如何选择和评估开源机器学习库

    作者:禅与计算机程序设计艺术 随着人工智能领域的飞速发展,机器学习已经逐渐成为最热门的话题之一。由于机器学习模型的复杂性、数据量、计算资源等因素的限制,目前开源机器学习库的数量也日益增多。不同的机器学习框架的功能、性能、易用程度都存在较大差异。

    2024年02月06日
    浏览(42)
  • 机器学习入门教学——人工智能、机器学习、深度学习

    1、人工智能 人工智能相当于人类的代理人,我们现在所接触到的人工智能基本上都是弱AI,主要作用是正确解释从外部获得的数据,并对这些数据加以学习和利用,以便灵活的实现特定目标和任务。 例如: 阿尔法狗、智能汽车 简单来说: 人工智能使机器像人类一样进行感

    2024年02月09日
    浏览(91)
  • 人工智能|机器学习——基于机器学习的舌苔检测

    基于深度学习的舌苔检测毕设留档.zip资源-CSDN文库 目前随着人们生活水平的不断提高,对于中医主张的理念越来越认可,对中医的需求也越来越多。在诊断中,中医通过观察人的舌头的舌质、苔质等舌象特征,了解人体内的体质信息从而对症下药。 传统中医的舌诊主要依赖

    2024年02月22日
    浏览(70)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包