DOTS Unity.Physics物理引擎的核心分析与详解

这篇具有很好参考价值的文章主要介绍了DOTS Unity.Physics物理引擎的核心分析与详解。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

最近DOTS发布了正式的版本,同时基于DOTS的理念实现了一套高性能的物理引擎,今天我们来给大家分享和介绍一下这个物理引擎的使用。

Unity.Physics的设计哲学

Unity.Physics是基于DOTS设计思想的一个高性能C#物理引擎的实现,  包含了物理刚体的迭代计算与碰撞检测等查询。Unity.Physics的设计理念与PhyX和Havok有所不同,它们追求的是全特性的物理模拟,而Unity.Physics追求的是最常用的一些物理机制的实现,相比传统的物理引擎,它实现的是物理引擎的核心子集,这样导致比传统的物理引擎实现起来更简单与高效,同时能满足大部分的需求。

 传统的物理引擎在迭代计算的时候为了保证物理引擎计算结果的稳定性,缓存了很多的状态,这样就给整个系统设计增加了复杂度与开销。比如传统物理引擎还考虑到了网络游戏的情况下,你整个物理引擎的回滚与向前迭代计算。Unity.Physics就丢弃掉了这些,使得更容易控制和更高效。Unity.Physics物理引擎的迭代与计算都是基于Job与ECS机制的,由于没有cache计算中的物理状态,导致它的性能会比传统的物理引擎在某些方面性能要好。Unity.Physics的里面的物理参数与数据描述与传统的Havok物理引擎兼容,这样如果我们的项目中要追求物理引擎的全面性与稳定性,我们可以很容易的使用Havok等商业的物理引擎。在Unity DOTS里面,如果你获得了物理引擎Havok的授权,你可以直接在Unity DOTS中使用Havok物理引擎。

Unity.Physics的源码目录结构如下:

Base: 包含了Unity.Pysics物理引擎使用的基本数据容器与数学计算;

Collistion: 包含了所有的碰撞检测与空间检测的算法代码;

DFG:包含了DataFlowGraph数据,在碰撞世界里面执行碰撞与设想检测;

Dynamics:包含了所有的物理引擎的运动计算,约束计算,迭代计算;

ECS: 包含了将ECS的组件数据导入,导出到Unity.Physics引擎中;

Extensions: 包含了一些工具性质的代码,扩展的一些组件,调试工具等;

DOTS Unity.Physics物理引擎的核心分析与详解,unity,全文检索,游戏引擎

Unity.Physics的物理引擎的全局设置

要对Unity DOTS的物理引擎做全局设置,我们可以给DOTS里面的SubScene添加一个”PhysicsStep”的组件实例。如下图所示:

DOTS Unity.Physics物理引擎的核心分析与详解,unity,全文检索,游戏引擎

Simulation Type: 下拉选项包含Unity Physics, Havok Physics, None,你可以来选择物理引擎的内核,如果你获得了Havok的商业授权,你就可以看到Havok Physics的选项。

Gravity: 设置整个物理世界的张力加速度;

Solver Iteration Count: 设置每次迭代计算的次数,次数越大,计算结果越精确稳定,但是也消耗更多的性能;

Multi Threaded: 是否基于多线程来进行迭代物理计算,如果勾选上,物理引擎会使用较多的线程来进行迭代计算,否则就使用少量的线程来迭代计算。

Unity DOTS 物理引擎简单的案例

接下来利用Unity DOTS来实现一个简单的物理引擎的案例,编写一个脚本TargetAuthoring.cs, 代码如下:

using Unity.Entities;using UnityEngine;
public struct Target : IComponentData{    public Entity TargetEntity;    public float MaxDistance;}
public class TargetAuthoring : MonoBehaviour{    public GameObject TargetGameObject;    public float MaxDistance;}
public class TargetAuthoringBaker : Baker<TargetAuthoring>{    public override void Bake(TargetAuthoring authoring){        var component = new Target        {            MaxDistance = authoring.MaxDistance,            TargetEntity = GetEntity(authoring.TargetGameObject)        };        AddComponent(component);    }}

再新建一个MovingBodyAuthoring.cs的文件,代码如下:

using Unity.Entities;using Unity.Mathematics;using Unity.Physics;using Unity.Transforms;using UnityEngine;
public struct MovingBody : IComponentData{    public float Velocity;}
public class MovingBodyAuthoring : MonoBehaviour{    public float Velocity;}
class MovingBodyAuthoringBaker : Baker<MovingBodyAuthoring>{    public override void Bake(MovingBodyAuthoring authoring){        var component = new MovingBody        {            Velocity = authoring.Velocity        };        AddComponent(component);    }}
public partial struct MovingBodySystem : ISystem{    public void OnUpdate(ref SystemState state){        foreach (var(target, transform, moving, velocity) in SystemAPI.Query<RefRO<Target>, RefRO<LocalTransform>, RefRW<MovingBody>, RefRW<PhysicsVelocity>>().WithAll<MovingBody>())        {            var targetPosition = SystemAPI.GetComponent<LocalTransform>(target.ValueRO.TargetEntity).Position;            var direction = math.normalize(targetPosition - transform.ValueRO.Position);
            if (math.distance(targetPosition, transform.ValueRO.Position) < target.ValueRO.MaxDistance)                velocity.ValueRW.Linear = moving.ValueRO.Velocity * direction;            else                velocity.ValueRW.Linear = new float3(0, 0, 0);        }    }}

打开SubScene场景,创作3个物体,一个地面(Cube),一个球体(Sphere),一个立方体节点(Target)。在球体上挂TargetAuthoring与MoveBodyAuthoring两个组件,并设置MoveBodyAuthoring的Velocity与MaxDistance为1与5,设置TargetAuthoring组件的的TargetGameObject为Target节点对象。如图所示:

Baker完成后得到Entity,如图所示:

DOTS Unity.Physics物理引擎的核心分析与详解,unity,全文检索,游戏引擎

运行效果如下:

DOTS Unity.Physics物理引擎的核心分析与详解,unity,全文检索,游戏引擎

今天的分享就到这里,需要本篇文章完整的工具与源码的同学可以点击"阅读全文"

链接:https://pan.baidu.com/s/1A3QaHpXYDXqVSJKaoZwcPQ?pwd=w741

提取码:w741文章来源地址https://www.toymoban.com/news/detail-841320.html

到了这里,关于DOTS Unity.Physics物理引擎的核心分析与详解的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Unity DOTS《群体战斗弹幕游戏》核心技术分析之3D角色动画

    最近DOTS发布了正式的版本, 我们来分享现在流行基于群体战斗的弹幕类游戏,实现的核心原理。今天给大家介绍大规模战斗群体3D角色的动画如何来实现。 DOTS 对角色动画支持的局限性 截止到Unity DOTS发布的版本1.0.16,目前还是无法很好的支持3D角色动画。在DOTS 的baker过程种,

    2024年02月04日
    浏览(60)
  • Unity --- 物理引擎 --- 触发器 与 碰撞器详解

    对第一个条件进行补充 --- 不仅要两者都具有碰撞组件,同时还需要两者的碰撞组件中都没有勾选 Is Trigger属性  1.上一篇文章中说了那么多,其实也可以总结为两个碰撞条件 --- a.两个游戏物体都具有碰撞器组件 ,如果没有的话,连碰撞检测都不会发生,也就没有所谓的碰不

    2024年02月07日
    浏览(46)
  • Unity3D 实现基于物理引擎的绳子关节解析详解

    在游戏开发中,有时候我们需要实现绳子关节效果,比如在射击游戏中射击绳子,或者在平衡游戏中使用绳子作为支撑。本文将详细介绍如何使用Unity3D的物理引擎实现绳子关节效果。 对惹,这里有一 个游戏开发交流小组 ,希望大家可以点击进来一起交流一下开发经验呀 首

    2024年02月21日
    浏览(90)
  • Unity UGUI的Physics2DRaycaster (2D物理射线检测)组件的介绍及使用

    Physics2DRaycaster是Unity中的一个UGUI组件,用于在2D场景中进行物理射线检测。它可以检测鼠标或触摸事件在UI元素上的碰撞,并将事件传递给相应的UI元素。 Physics2DRaycaster通过发射一条射线来检测UI元素的碰撞。当射线与UI元素相交时,Physics2DRaycaster会将事件传递给相应的UI元素,

    2024年02月15日
    浏览(49)
  • Unity DOTS Baking与Baker详解

    Unity DOTS Baking与Baker详解   最近DOTS终于发布了正式的版本, 我们来分享一下DOTS里面Baking 与Baker的关键概念,方便大家上手学习掌握Unity DOTS开发。   Unity DOTS开发模式,为了让大家在”创作”游戏的时候使用原来组件方式来编辑游戏场景与资源,同时Unity提供了一种Baking机制

    2024年04月17日
    浏览(38)
  • Unity核心3——2D物理系统

    ​ 刚体是物理系统中用于帮助我们进行模拟物理碰撞中力的效果的 ​ 2D 物理系统中的刚体和 3D 中的刚体基本是一样的,最大的区别是对象只会在 XY 平面中移动,并且只在垂直于该平面的轴上旋转 ​ 不同于 3D 刚体,2D 刚体具有以下三种类型: ​ 物体会受到力的影响移动和

    2024年02月09日
    浏览(50)
  • Unity基础课程之物理引擎6-关于物理材质的使用和理解

     每个物体都有着不同的摩擦力。光滑的冰面摩擦力很小,而地毯表面的摩擦力则很大。另外每种材料也有着不同的弹性,橡皮表面的弹性大,硬质地面的弹性小。在Unity中这些现象都符合日常的理念。虽然从原理上讲,物体的摩擦力和弹性有着更复杂的内涵,例如普通的钢板

    2024年02月07日
    浏览(48)
  • Unity3D学习笔记——物理引擎

    1简介 刚体可以为游戏对象赋予物理特性,是游戏对象在物理系统的控制下接受推力和扭力,从而实现现实世界的物理学现象。 2属性 1简介 碰撞器是物理组件的一类,他与刚体一起促使碰撞发生 碰撞体是简单形状,如方块、球形或者胶囊形,在 Unity 3D 中每当一个 GameObjects

    2023年04月12日
    浏览(51)
  • Unity --- 物理引擎 ---- 刚体RigidBody 与 碰撞器 collider

      1.RigidBody(刚体)的作用是让物体具有物理特性(比如说重力,摩檫力等等) 2.如果想让物体能够与其它物体发生碰撞的话,我们还需要一个组件 --- Colider碰撞器组件 1.上图就是Unity中提供的已经准备好的各种形状的碰撞器组件 2.形成不同形状的碰撞器所需的面数不同,面数

    2024年02月16日
    浏览(40)
  • 物理信息神经网络PINNs : Physics Informed Neural Networks 详解

    本博客主要分为两部分: 1、PINN模型论文解读 2、PINN模型相关总结 基于物理信息的神经网络(Physics-informed Neural Network, 简称PINN),是一类用于解决有监督学习任务的神经网络,同时尊重由一般非线性偏微分方程描述的任何给定的物理规律。 原理 :它不仅能够像传统神经网

    2024年02月02日
    浏览(51)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包