R语言中使用ggplot2绘制散点图箱线图,附加显著性检验

这篇具有很好参考价值的文章主要介绍了R语言中使用ggplot2绘制散点图箱线图,附加显著性检验。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

散点图可以直观反映数据的分布,箱线图可以展示均值等关键统计量,二者结合能够清晰呈现数据蕴含的信息。

箱型图代码ggplot,程序人生

本篇笔记主要内容:介绍R语言中绘制箱线图和散点图的方法,以及二者结合展示教程,添加差异比较显著性分析,绘制如上结果图。


加载R包与数据

library(ggpubr) 
library(patchwork) 
library(ggsci)
library(tidyverse)
# 使用R语言自带的iris数据集,并随机分成两组
data <- iris
data$Group <- NA
data$Group[sample(1:nrow(data),size = (nrow(data)/2))] <- "A"
data$Group[is.na(data$Group)] <- "B"

箱型图代码ggplot,程序人生
在实际数据可视化过程中,输入数据格式也和上面类似,至少有两列,其中一列是分类,另一列是数值。

绘制箱线图

ggplot(data,aes(x = Species,y = Sepal.Width)) +
    geom_boxplot(aes(fill = Species),alpha = 0.7)

这里将Species设置为x轴,Sepal.Width设置为y轴,箱子内部填充颜色与Species映射。
箱型图代码ggplot,程序人生

这段代码的作用是创建一个箱形图,显示不同物种(Species)的萼片宽度(Sepal.Width)分布,且不同物种的箱形用不同颜色表示,并且这些颜色半透明。

这种类型的图表通常用于展示和比较不同类别或组的数据分布情况,特别是中位数、四分位数等统计信息。

绘制散点图

ggplot(data,aes(x = Species,y = Sepal.Width)) +
    geom_jitter(aes(color = Species))

箱型图代码ggplot,程序人生

利用ggplot2包创建散点图,并通过geom_jitter功能添加一些随机噪声来分散点,以便更清晰地展示数据。

绘制箱线图+散点图

p <- ggplot(data,aes(x = Species,y = Sepal.Width)) +
    geom_boxplot(aes(fill = Species),alpha = 0.7)+
    geom_jitter(aes(color = Species))+
    scale_fill_manual(values = c("#f79f1f","#a3cb38","#1289a7"))+
    scale_color_manual(values = c("#f79f1f","#a3cb38","#1289a7"))+
    theme_bw()+
    theme(panel.grid = element_blank())
p

箱型图代码ggplot,程序人生

单因素多水平比较

对于两组以上的独立样品,如果数据同时满足正态性和方差齐性,可以采用方差分析(ANOVA)或者Kruskal检验,如果不满足可采用Kruskal检验。

p <- p + stat_compare_means(
    method = "kruskal.test",
    label = "p.format",
    label.x = 2,
    label.y = 4,
    show.legend = F
)
p

箱型图代码ggplot,程序人生

可以看到上图中自动标注的显著性P值,通过修改label参数可以转换展示方式,默认显示检验方法和p值。

p.format只显示p值不显示检验方法,p.signif显示显著性水平符号,ns: p > 0.05、*: p <= 0.05、**: p <= 0.01、***: p <= 0.001、****: p <= 0.0001。

  • method:选择统计学检验的方法

箱型图代码ggplot,程序人生

单因素两两比较

如果想看两两之间的差异显著性,例如“setosa”和“versicolor”,可以通过wilcox.test方法进行检验。

# 首先设置比较的列表
compare_list <- list(
    c("setosa","versicolor"),
    c("versicolor","virginica")
p <- ggplot(data,aes(x = Species,y = Sepal.Width)) +
    geom_boxplot(aes(fill = Species),alpha = 0.7)+
    geom_jitter(aes(color = Species))+
    scale_fill_manual(values = c("#f79f1f","#a3cb38","#1289a7"))+
    scale_color_manual(values = c("#f79f1f","#a3cb38","#1289a7"))+
    theme_bw()+
    theme(panel.grid = element_blank())+
    stat_compare_means(
    comparisons = compare_list,
    method = "wilcox.test",
    label = "p.signif")
)

代码中stat_compare_means函数提供统计学检验,调节参数可以转换方法和展示方式。
箱型图代码ggplot,程序人生

双因素组内比较

如果引入分组信息作为另外一个因素,那么可以对每个水平内两组进行比较。

p <- ggplot(data,aes(x = Species,y = Sepal.Length,color = Group))+
    geom_boxplot(aes(fill=Group),alpha=0.5)
p

箱型图代码ggplot,程序人生

箱线 + 散点

p <- ggplot(data,aes(x = Species,y = Sepal.Length,color = Group))+
    geom_boxplot(aes(fill=Group),alpha=0.5)+
    geom_jitter(position = position_jitterdodge(jitter.width = 0.5,
                                                jitter.height = 0.5,
                                                dodge.width = 0.2))+
    scale_fill_manual(values = c("#f79f1f","#a3cb38","#1289a7"))+
    scale_color_manual(values = c("#f79f1f","#a3cb38","#1289a7"))+
    theme_bw()
p

箱型图代码ggplot,程序人生

position_jitterdodge函数可以调整散点图的抖动范围,scale_fill_manual用于调整填充颜色,theme_bw用于设置主题,这段代码仅作图。

统计学检验

p <- p + stat_compare_means(
    aes(group = Group),
    label = "p.format",
    show.legend = F,
    label.y = 8.5
)
p

箱型图代码ggplot,程序人生

这张图x轴是不同分类,每个分类下有A和B两组,y轴表示具体的值,每个分类上有P值标注。

在实际的分析可视化过程中,还要考虑实验设计、数据分布状态等因素,合理选择检验方法,并根据目的和需求修改相应参数。

本文由mdnice多平台发布文章来源地址https://www.toymoban.com/news/detail-841706.html

到了这里,关于R语言中使用ggplot2绘制散点图箱线图,附加显著性检验的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包