【YOLOv8改进】 YOLOv8 更换骨干网络之 GhostNet :通过低成本操作获得更多特征 (论文笔记+引入代码).md

这篇具有很好参考价值的文章主要介绍了【YOLOv8改进】 YOLOv8 更换骨干网络之 GhostNet :通过低成本操作获得更多特征 (论文笔记+引入代码).md。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

介绍

yolov8目标检测的ghostconv,YOLO目标检测创新改进与实战案例精讲,YOLO,论文阅读

摘要

在嵌入式设备上部署卷积神经网络(CNNs)由于有限的内存和计算资源而变得困难。特征图中的冗余是那些成功的CNNs的一个重要特性,但在神经架构设计中很少被研究。本文提出了一种新颖的Ghost模块,用于通过低成本操作生成更多的特征图。基于一组内在特征图,我们应用一系列低成本的线性变换来生成许多能够充分揭示内在特征信息的幽灵特征图。所提出的Ghost模块可以作为一个即插即用的组件来升级现有的卷积神经网络。设计了Ghost瓶颈来堆叠Ghost模块,然后可以轻松建立轻量级的GhostNet。在基准测试上进行的实验表明,所提出的Ghost模块是基线模型中卷积层的一个令人印象深刻的替代品,而我们的GhostNet在相似的计算成本上可以实现比MobileNetV3更高的识别性能(例如,ImageNet ILSVRC-2012分类数据集上的75.7%的top-1准确率)。

创新点

GhostNet的创新点主要包括:文章来源地址https://www.toymoban.com/news/detail-841721.html

  1. Ghost模块: 提出一种新的Ghost模块,通过低成本操作生成更多的特征图。该模块首先使用一部分原始特征图,然后通过应用一系列简单的线性变换(廉价操作)生成更多的特征图(称为Ghost特征图),这些特征图能够充分揭示原始特征中的信息。
  2. 高效性: 通过减少所需的参数和计算复杂度,Ghost模块显著降低了卷积神经网络的资源消耗。这使得GhostNet特别适

到了这里,关于【YOLOv8改进】 YOLOv8 更换骨干网络之 GhostNet :通过低成本操作获得更多特征 (论文笔记+引入代码).md的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • YOLOv8 更换骨干网络之 MobileNetV3

    论文地址:https://arxiv.org/abs/1905.02244 代码地址:https://github.com/xiaolai-sqlai/mobilenetv3 我们展示了基于互补搜索技术和新颖架构设计相结合的下一代 MobileNets。MobileNetV3通过结合硬件感知网络架构搜索(NAS)和 NetAdapt算法对移动设计如何协同工作,利用互补的方法来提高移动端CP

    2023年04月21日
    浏览(44)
  • 改进YOLO系列 | YOLOv5 更换骨干网络之 ConvNeXt

    🍀2023/6/30 更新源代码 ,并追加结构对应的超参数文件 论文地址:https://arxiv.org/pdf/2201.03545.pdf 代码地址:https://github.com/facebookresearch/ConvNeXt 视觉识别的“Roaring 20年代”始于视觉变换器(ViTs)的引入,它很快取代了ConvNets,成为最先进的图像分类模型。另一方面,普通ViTs在应

    2024年02月04日
    浏览(50)
  • 改进YOLO系列 | GhostNetV2: 用长距离注意力增强低成本运算 | 更换骨干网络之GhostNetV2

    *包含YOLOv5、YOLOv7、YOLOv7-Tiny 的 yaml 文件 轻量级卷积神经网络(CNN)是专门为在移动设备上具有更快推理速度的应用而设计的。卷积操作只能捕捉窗口区域内的局部信息,这防止了性能的进一步提高。将自注意力引入卷积可以很好地捕捉全局信息,但这将大大拖累实际速度。

    2023年04月17日
    浏览(53)
  • 主干网络篇 | YOLOv8更换主干网络之VanillaNet | 华为方舟实验室提出全新轻量级骨干架构

    前言: Hello大家好,我是小哥谈。 华为方舟实验室所提出的VanillaNet架构克服了固有复杂性的挑战,使其成为资源受限环境的理想选择。其易于理解和高度简化的架构为高效部署开辟了新的可能性。广泛的实验表明,VanillaNet提供的性能与著名的深度神经网络和vision transformer

    2024年04月14日
    浏览(72)
  • YOLOv8-Seg改进:轻量化改进 | 华为GhostNet再升级,全系列硬件上最优极简AI网络G_ghost | IJCV22

    🚀🚀🚀 本文改进:   巧妙引入跨层的廉价操作,减少计算量的同时减少的内存数据搬运,基于此设计了GPU版GhostNet,G-GhostNet与YOLOV8建立轻量结合 🚀🚀🚀 YOLOv8-seg创新专栏 : 学姐带你学习YOLOv8,从入门到创新,轻轻松松搞定科研; 1)手把手教你如何训练YOLOv8-seg; 2)模

    2024年02月02日
    浏览(56)
  • YOLOv8芒果独家首发 | 改进新主干:改进版目标检测新范式骨干PPHGNetv2,百度出品,提升YOLOv8检测能力

    💡 本篇内容 :YOLOv8改进新主干:目标检测新范式骨干PPHGNetv2改进版,百度出品,提升YOLOv8检测能力 💡🚀🚀🚀本博客 改进源代码改进 适用于 YOLOv8 按步骤操作运行改进后的代码即可 💡本文提出改进 原创 方式:二次创新,YOLOv8专属,充分结合YOLOv8和 PPHGNetv2网络 本改进结

    2024年02月06日
    浏览(47)
  • YOLOv5改进系列(10)——替换主干网络之GhostNet

    【YOLOv5改进系列】前期回顾: YOLOv5改进系列(0)——重要性能指标与训练结果评价及分析 YOLOv5改进系列(1)——添加SE注意力机制

    2024年02月09日
    浏览(88)
  • YOLOV8改进:更换为MPDIOU,实现有效涨点

    1.该文章属于YOLOV5/YOLOV7/YOLOV8改进专栏,包含大量的改进方式,主要以2023年的最新文章和2022年的文章提出改进方式。 2.提供更加详细的改进方法,如将注意力机制添加到网络的不同位置,便于做实验,也可以当做论文的创新点。 2.涨点效果:更换为MPDIOU,实现有效涨点! 目录

    2024年02月10日
    浏览(57)
  • YOLOv5/v7 更换骨干网络之 SwinTransformer

    提供 YOLOv5 / YOLOv7 / YOLOv7-tiny 模型 YAML 文件 论文地址:https://arxiv.org/pdf/2103.14030.pdf 代码地址:https://github.com/microsoft/Swin-Transformer 本文介绍了一种新的视觉 Transformer ,称为 Swin Transformer ,它可以作为计算机视觉通用的骨干网络。从语言到视觉的转换中,适应 Transformer 所面临的

    2023年04月14日
    浏览(56)
  • YOLOv8改进轻量级PP-LCNet主干系列:最新使用超强悍CPU级骨干网络PP-LCNet,在CPU上让模型起飞,速度比MobileNetV3+快3倍,又轻又快

    💡本篇文章 基于 YOLOv8 芒果改进YOLO系列: YOLOv8改进轻量级主干系列:最新使用超强悍CPU级骨干网络PP-LCNet,在CPU上让模型起飞,速度比MobileNetV3+快3倍、打造全新YOLOv8检测器 。 🚀🚀🚀内含改进源代码,按步骤操作运行改进后的代码即可 参数量和计算量均下降 重点 :🔥🔥

    2024年02月06日
    浏览(54)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包