线性代数(魏福义)——第一章:向量与线性空间

这篇具有很好参考价值的文章主要介绍了线性代数(魏福义)——第一章:向量与线性空间。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1.1向量及其线性运算

坐标系中可使用向量处理几何与运动学的问题,一般使用到二维或者三维有序数组,如(x,y)、(x,y,z),这样的数组称作向量,实际问题会用到更多维的向量。

1.1.1向量

以有序数组表示向量。n个数排成的有序数组就是n维向量。

α=(a1,a2,a3...,an)称为行向量;将其转置如下图形式即为列向量;转置后二者是不同的向量

按照(4,2,1)的规则重复向量v2,线性代数,线性代数,Powered by 金山文档

T为转置符号

ai就是向量α第i个分量,分量的个数叫做向量的维数

向量组:维数相同的一些向量构成的集合,称为向量组

向量的基本概念:

按照(4,2,1)的规则重复向量v2,线性代数,线性代数,Powered by 金山文档

1.1.2 向量的线性运算

与(x,y)和(x,y,z)向量的线性运算类似,n维向量也有线性运算(加法、减法、数乘)的运算:

按照(4,2,1)的规则重复向量v2,线性代数,线性代数,Powered by 金山文档

由此衍生的运算定律比较简单,略去。

所有n维向量构成的集合记为R^n,也称n维向量空间(一个空间里都是n维向量,且这些向量进行线性运算的结果仍在此空间中,则称此空间为n维向量空间)

1.2 向量的内积

R^3(3维向量空间)中有:

按照(4,2,1)的规则重复向量v2,线性代数,线性代数,Powered by 金山文档

1.2.1 向量的内积

类似于R^3中向量的内积,R^n中内积公式如图:

按照(4,2,1)的规则重复向量v2,线性代数,线性代数,Powered by 金山文档

由内积公式得到的性质:

按照(4,2,1)的规则重复向量v2,线性代数,线性代数,Powered by 金山文档

1.2.2 向量的模

按照(4,2,1)的规则重复向量v2,线性代数,线性代数,Powered by 金山文档

长度为1则为单位向量

性质:

按照(4,2,1)的规则重复向量v2,线性代数,线性代数,Powered by 金山文档

1.2.3 向量的距离

按照(4,2,1)的规则重复向量v2,线性代数,线性代数,Powered by 金山文档

1.2.4 向量的夹角

按照(4,2,1)的规则重复向量v2,线性代数,线性代数,Powered by 金山文档

θ∈[0,Π]

1.3 向量的线性关系

1.3.1 线性组合与线性表出

设α₁,α₂,…,αₑ(e≥1)是域P上线性空间V中的有限个向量。若V中向量α可以表示为:α=k₁α₁+k₂α₂+…+kₑαₑ(kₑ∈P,e=1,2,…,s);则称α是向量组α₁,α₂,…,αₑ的一个线性组合,亦称α可由向量组α₁,α₂,…,αₑ线性表示线性表出

例如:在三维线性空间P3中,向量α=(a₁,a₂,a₃)可由向量组α₁=(1,0,0),α₂=(0,1,0),α₁=(0,0,1)线性表出α=a₁α₁+a₂α₂+a₃α₃。

判断一个向量是否可用由一个向量组线性表出:

例:

按照(4,2,1)的规则重复向量v2,线性代数,线性代数,Powered by 金山文档

方程有非零解即为可以线性表出

1.3.2 线性相关与线性无关

按照(4,2,1)的规则重复向量v2,线性代数,线性代数,Powered by 金山文档

相关就是有关系,有人用某宝与拼西西,在某宝买东西多了那么在拼西西买东西就少了,但是买的东西总量不变,则ax+by=0,a与b都不为0时,x变化了,y也要变化。这就表明x和y是有关系的,能够互相影响的。这种关系画成图像是一条直线,则为线性相关。

1.4 向量的线性关系的判定(1)

定理1.4.1: 向量组 a1,a2,...,an 线性相关的充要条件是该向量组中至少有一个向量可以由其余向量线性表出。

定理1.4.2:

按照(4,2,1)的规则重复向量v2,线性代数,线性代数,Powered by 金山文档

证明:

按照(4,2,1)的规则重复向量v2,线性代数,线性代数,Powered by 金山文档

1.5 向量的线性关系的判定(2)

定理1.5.1

按照(4,2,1)的规则重复向量v2,线性代数,线性代数,Powered by 金山文档

证明:

按照(4,2,1)的规则重复向量v2,线性代数,线性代数,Powered by 金山文档

k1a1+k2a2=0, k1、k2不全为0,则a1,a2线性相关,而k1a1+k2a2+k3a3=0,k3可以是0,因为k1、k2、k3不全为0即可,a1,a2,a3就是线性相关的。

同理可以推出:

按照(4,2,1)的规则重复向量v2,线性代数,线性代数,Powered by 金山文档

“部分相关,则整体相关整体无关,则部分无关”

可以证明:

按照(4,2,1)的规则重复向量v2,线性代数,线性代数,Powered by 金山文档

(1)如果向量组只含一个0向量则存在常数1使得1*0=0,所以向量组线性相关,如果只含一个非零向量,则kα=0中k只能等于0,线性无关

(2)k1α1+k2α2=0,k1、k2不全为0,就是线性相关了,若α2为0向量,k1是0,k2可以是任意实数

(3)(1,2,3)^T和(2,4,6)^T线性相关,因为对应分量成比例,反之无关

定理1.5.2

按照(4,2,1)的规则重复向量v2,线性代数,线性代数,Powered by 金山文档
按照(4,2,1)的规则重复向量v2,线性代数,线性代数,Powered by 金山文档

原来就是线性无关,比如(1,2,3)与(2,5,0)易证是线性无关的,那么(1,2,3,4)和(2,5,0,8)肯定也是无关的,前三个数就不各成比例了,再加什么分量都没用

同理,原本是相关的,每个向量减少分量,也还是线性相关的

“短无关,则长无关,长相关,则短相关”

1.6 向量组的秩

极大线性无关向量组(极大无关组)
按照(4,2,1)的规则重复向量v2,线性代数,线性代数,Powered by 金山文档

什么意思呢?

例:

按照(4,2,1)的规则重复向量v2,线性代数,线性代数,Powered by 金山文档

其中α1、α2、α3是不相关的(自己算),但是这三个加上α4或α5之中的任意一个就变成有关的了,也就是说向量组α1、α2、α3是最多向量元素的无关向量组了,所以称极大线性无关向量组

极大无关组的元素个数就叫向量组α1、α2、α3、α4、α5的秩,记为rank(T),简记r(T)。

如果拿掉α3,只剩α1、α2,任意r+1个向量都线性相关的条件就不满足了,所以向量组的秩是唯一的,但极大无关组是不一定是唯一的。本例的α2、α3、α4就也是一个极大无关组。

向量组的线性表示
按照(4,2,1)的规则重复向量v2,线性代数,线性代数,Powered by 金山文档
向量组的等价
按照(4,2,1)的规则重复向量v2,线性代数,线性代数,Powered by 金山文档
引理 1.6.1
按照(4,2,1)的规则重复向量v2,线性代数,线性代数,Powered by 金山文档

证明:

按照(4,2,1)的规则重复向量v2,线性代数,线性代数,Powered by 金山文档

为什么s>t,齐次方程组必有非零解?

因为该方程组有s个未知数,k1到ks,而方程个数只有t个,s>t,那当然一定有非零解了。比如:方程组:x+y=0,两个未知数,一个方程,x和y都是自由变量,想怎么取怎么取,得到的是一个解集。而一个方程一个未知数,x+1=0,这样的话x就是确定只有一个解。

引理 1.6.2

两个等价的向量组的秩相等

等价就是两个向量组可以相互表示,能相互表示的原因是它们可以通过一系列基本行变换相互转化这些基本行变换都可以看作是对矩阵进行初等行变换所对应的行变换,它们不会改变矩阵的秩。
定理1.6.1
按照(4,2,1)的规则重复向量v2,线性代数,线性代数,Powered by 金山文档

由条件可知:

vr+1 = k1v1 + k2v2 + ... + krvr

假设vr+1也是线性无关的,则它不能表示为v1, v2, ..., vr中任意向量的线性组合。但是,上面的式子说明了vr+1可以表示为v1, v2, ..., vr的线性组合,与假设矛盾。所以,vr+1不能是线性无关的,也就是说v1, v2, ..., vr+1中至少有一个向量可以由v1, v2, ..., vr线性表示出来。(也就是说线性无关组的向量个数最多就是r个了,那就是极大无关组了)

因此,我们可以继续添加向量,直到添加完所有的n个向量。此时,我们得到了一个包含所有n个向量的线性组合。因为v1, v2, ..., vn中的每个向量都可以由v1, v2, ..., vr表示出来,所以整个向量组T都可以由v1, v2, ..., vr表示出来。

同时,因为v1, v2, ..., vr线性无关,所以它们不能由v1, v2, ..., vn中其他向量线性表示,也就是说,它们是T的极大无关组。

1.7 线性空间

1.7.1 数域

在数学中,数域是指一个集合,其中包含了一些数,并且定义了加法、减法、乘法、除法等基本运算,同时这些运算满足一些基本的性质,例如结合律、交换律、分配律等等。

数域里面的任意两个数的和差积商仍是该数域里的数

数域是集合,集合是数域吗?

按照(4,2,1)的规则重复向量v2,线性代数,线性代数,Powered by 金山文档

1.7.2 线性空间

线性空间(或称向量空间)是一个非空集合 V,其中的元素被称为向量,同时满足以下条件:
对于 V 中任意两个向量 u、v,它们的和 u+v 仍然属于 V。(封闭性)
对于 V 中任意一个向量 u 和任意一个标量 a,它们的乘积 au 仍然属于 V。(封闭性)
V 中存在一个零向量 0,使得对于 V 中任意一个向量 u,都有 u+0=u。
对于 V 中任意一个向量 u,存在一个相反向量 -u,使得 u+(-u)=0。
向量加法满足结合律、交换律和存在单位元素,即对于 V 中任意三个向量 u、v、w,有:
结合律:(u+v)+w = u+(v+w)
交换律:u+v = v+u
存在单位元素:对于 V 中任意一个向量 u,存在一个零向量 0,使得 u+0=u。
标量乘法满足结合律和分配律,即对于 V 中任意一个向量 u,任意两个标量 a、b,有:
结合律:a(bu) = (ab)u
分配律:a(u+v) = au+av,(a+b)u = au+bu。
满足以上条件的集合被称为线性空间或向量空间,其中的元素被称为向量,标量乘法中的标量可以是实数或复数。

向量空间与线性空间有什么区别?

向量空间的元素是向量,而线性空间的元素可以是数组、多项式、向量、函数等,初步认识为向量空间是一种线性空间吧。

1.7.3 线性空间的性质

按照(4,2,1)的规则重复向量v2,线性代数,线性代数,Powered by 金山文档

1.7.4 线性子空间

线性空间的子集如果满足线性空间的定义,那就是一个线性子空间。

定义1.7.3
按照(4,2,1)的规则重复向量v2,线性代数,线性代数,Powered by 金山文档

也就是只用验证子集的封闭性就可以说这个子集是子空间了。

1.7.5 线性空间的基和维数

按照(4,2,1)的规则重复向量v2,线性代数,线性代数,Powered by 金山文档

维数可记为:dimV=r

无限维线性空间:一个线性空间V中存在任意多个线性无关的向量,则称V是无限维线性空间

一个简单的无限维线性空间的例子是所有实数的集合R。在这个空间中,我们可以对任意两个实数进行加法和数乘操作,它们的结果仍然是一个实数。此外,任意实数都可以看作是一个标量乘以1的形式,因此1可以被认为是这个空间的基向量。由于实数是无限个,因此这个线性空间就是无限维的。
定理1.7.1

若线性空间V的维数dimV=r,则r个线性无关的向量组成的任意子集都是V的一个基。

1.7.6 基下坐标

按照(4,2,1)的规则重复向量v2,线性代数,线性代数,Powered by 金山文档

1.8 正交向量组

1.8.1 正交向量

如果两个向量的内积等于0,则称它们正交。

1.8.2 正交向量组

按照(4,2,1)的规则重复向量v2,线性代数,线性代数,Powered by 金山文档

正交基:简单来说,正交基是由一组相互垂直的向量组成的基

一个向量组是线性空间的基,且该向量组是正交向量组,那就是正交基。比如R2欧氏空间(二维平面)中,(1,0)和(0,1)是正交向量组,也是基,就称(1,0)和(0,1)是R2的正交基。
定理 1.8.1
按照(4,2,1)的规则重复向量v2,线性代数,线性代数,Powered by 金山文档
a1和a2、a3的内积分别为0,如果a1=λ2a2+λ3a3,两边乘a2,得到0=λ2a2^2 ,那么λ2必为0,同理λ3必为0,都是0,那么线性无关。

1.9 标准正交向量组

每个向量都是单位向量的正交向量组,称为标准正交向量组

标准正交基

按照(4,2,1)的规则重复向量v2,线性代数,线性代数,Powered by 金山文档

根据标准正交基确定向量空间中任意向量的坐标:

按照(4,2,1)的规则重复向量v2,线性代数,线性代数,Powered by 金山文档
比如直角坐标系中使用(1,0,0),(0,1,0),(0,0,1)作为标准正交基
在直角坐标系中的向量的坐标就可以写成:(2,3,5)=2(1,0,0)+3(0,1,0)+5(0,0,1)

怎么确定ci的值呢?

按照(4,2,1)的规则重复向量v2,线性代数,线性代数,Powered by 金山文档
比如(2,3,5)=k1(1,0,0)+k2(0,1,0)+k3(0,0,1),两边点乘(1,0,0),得到
2=k1,k2、k3同理。

定理1.9.1:

按照(4,2,1)的规则重复向量v2,线性代数,线性代数,Powered by 金山文档
比如(2,3,1)·(4,2,5)=2x4+3x2+1x5......不解释了。

这个基不一定是(1,0,0)(0,0,1)形式的,只是我们经常使用的基是这种。

1.10 向量组的标准正交化

对于已知向量空间V,dimV=r,那么任意r个线性无关向量都是V的基,使用基可以的到向量在该基下的坐标,什么样的基方便求坐标呢?当然是标准正交基,前面得到了在标准正交基下求坐标的公式,用公式求当然比解方程更容易。

得到了一个一般基,怎么通过这个一般基得到标准正交基就是本节内容。

施密特正交化方法

施密特正交化方法是一个将线性无关向量组化为与之等价的正交向量组的方法。

按照(4,2,1)的规则重复向量v2,线性代数,线性代数,Powered by 金山文档

平面中两个任意不平行的向量就可以作为基,a、b是一个非正交向量组,c是a在b上的投影,那么a-c与b这两个向量就是正交向量组。这就是施密特正交化方法在二维向量空间中的例子。

以下是关于施密特正交化方法的定理:文章来源地址https://www.toymoban.com/news/detail-841968.html

按照(4,2,1)的规则重复向量v2,线性代数,线性代数,Powered by 金山文档
等价就是两个向量组可以相互线性表示(1.6节内容),这是显然的,β1、2、3...都是由a1、2、3... 推出来的。

1.11 巩固练习

(一)

按照(4,2,1)的规则重复向量v2,线性代数,线性代数,Powered by 金山文档

(二)

按照(4,2,1)的规则重复向量v2,线性代数,线性代数,Powered by 金山文档

(三)

按照(4,2,1)的规则重复向量v2,线性代数,线性代数,Powered by 金山文档
按照(4,2,1)的规则重复向量v2,线性代数,线性代数,Powered by 金山文档

(四)

按照(4,2,1)的规则重复向量v2,线性代数,线性代数,Powered by 金山文档

(五)

按照(4,2,1)的规则重复向量v2,线性代数,线性代数,Powered by 金山文档

(六)

按照(4,2,1)的规则重复向量v2,线性代数,线性代数,Powered by 金山文档

(七)

按照(4,2,1)的规则重复向量v2,线性代数,线性代数,Powered by 金山文档

(八)

按照(4,2,1)的规则重复向量v2,线性代数,线性代数,Powered by 金山文档

(九)

按照(4,2,1)的规则重复向量v2,线性代数,线性代数,Powered by 金山文档
按照(4,2,1)的规则重复向量v2,线性代数,线性代数,Powered by 金山文档

(十)

按照(4,2,1)的规则重复向量v2,线性代数,线性代数,Powered by 金山文档

只是个人学习记录与总结。错漏难免,酌情观看。

到了这里,关于线性代数(魏福义)——第一章:向量与线性空间的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 线性代数(基础篇):第一章:行列式 、第二章:矩阵

    1. A可逆 ⇦⇨①|A|≠0 ⇦⇨②r(A)=n,A满秩 ⇦⇨③A的列向量 α₁,α₂,…α n 线性无关 ⇦⇨④Ax=0仅有零解 (系数矩阵的秩 = 列数,列满秩) ⇦⇨⑤ A的特征值均不为0 【17年5.】 2.  A不可逆 ⇦⇨①|A|=0 ⇦⇨②r(A)n,A不满秩 ⇦⇨③A的列向量 α₁,α₂,…α n 线性相关 ⇦⇨④Ax=0有非

    2024年02月16日
    浏览(53)
  • 线性代数中涉及到的matlab命令-第一章:行列式

    目录 1,逆序数  2,行列式定义和性质 2.1,常用特性及命令  2.2,求行列式 2.3,行列式的性质  2,行列式按行(列)展开  3,范德蒙德行列式   在学习线性代数过程中,发现同步使用MATLAB进行计算验证可以加深对概念的理解,并能掌握MATLAB的命令和使用方法; 使用的线性

    2024年02月04日
    浏览(45)
  • 从零开始学数据分析之——《线性代数》第一章 行列式

    三十而立之年,开始自学数据分析,工作比较清闲,现发帖记录自己的数据分析之路,数据分析要学很多的东西,经过多月的摸索,目前分两个方面开始学习: ·知识方面:数学为王,拿起书本,重学《概率与统计》、《微积分》、《线性代数》 ·软件方面:MySQL、Python 将暂

    2024年02月12日
    浏览(48)
  • 线性代数本质系列(一)向量,线性组合,线性相关,矩阵

    本系列文章将从下面不同角度解析线性代数的本质,本文是本系列第一篇 向量究竟是什么? 向量的线性组合,基与线性相关 矩阵与线性相关 矩阵乘法与线性变换 三维空间中的线性变换 行列式 逆矩阵,列空间,秩与零空间 克莱姆法则 非方阵 点积与对偶性 叉积 以线性变换

    2024年02月04日
    浏览(54)
  • 线性代数(三) 线性方程组&向量空间

    如何利用行列式,矩阵求解线性方程组。 用矩阵方程表示 齐次线性方程组:Ax=0; 非齐次线性方程组:Ax=b. 可以理解 齐次线性方程组 是特殊的 非齐次线性方程组 如何判断线性方程组的解 其中R(A)表示矩阵A的秩 B表示A的增广矩阵 n表示末知数个数 增广矩阵 矩阵的秩 秩r= 未知

    2024年02月13日
    浏览(47)
  • 线性代数 --- 向量的长度

    从代数的角度定义向量的长度 :       正如我在另外一篇文章中(见本文底部的推荐链接)提到的,两个向量(这是默认是两个列向量)的内积,可以表示为也可以表示为。现在我们考虑一种特殊情形,现在我们有一个向量v=(1,2,3),那么这个向量自己和自己的内积是多少呢

    2024年02月02日
    浏览(43)
  • 线性代数之向量组

    文章目录 前言 一、定义与定理 1、定义 1.1、n维向量 1.2、线性组合 1.3、线性表示(出)   1.4、线性相关 1.5、线性无关 2、判别线性相关的七大定理 2.1、定理一: 2.2、定理二: 2.3、定理三: 2.4、定理四: 2.5、定理五: 2.6、定理六: 2.7、定理七: 二、具体型向量关系 1.与

    2024年03月26日
    浏览(50)
  • 线性代数基础【3】向量

    一、基本概念 ①向量 ②向量的模(长度) ③向量的单位化 ④向量的三则运算 ⑤向量的内积 二、向量运算的性质 (一)向量三则运算的性质 α + β = β + α α + (β + γ) = (α + β) + γ k (α + β) = kα + kβ (k + l) α = kα + lα (二)向量内积运算的性质 (α , β) = (β , α) = α^Tβ = β^Tα (α , α)

    2024年02月03日
    浏览(50)
  • 线性代数基础--向量

    目录 向量的概念 基本概念 抽象概念 向量的意义  几何意义 物理意义 欧式空间 特点和性质  行向量与列向量 行向量 列向量 两者的关系 向量的基本运算与范数 向量的基本运算 向量的加法 数乘运算(实数与向量相乘) 转置 向量的范数 向量的模与内积 向量的模 向量的内积

    2024年02月11日
    浏览(57)
  • 线性代数(一)——向量基础

    线性代数的核心是向量的加和乘两种运算的组合,本篇博客为线性代数的一个引子,主要从向量、线性组合和矩阵逐步引出线性代数的相关知识。 首先介绍的是向量相关,向量是基础。 已知列向量: υ = [ v 1 v 2 ] boldsymbol{upsilon}=left[begin{matrix} v_1 \\\\ v_2end{matrix} right] υ =

    2024年03月21日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包