使用 Keras 的 Stable Diffusion 实现高性能文生图

这篇具有很好参考价值的文章主要介绍了使用 Keras 的 Stable Diffusion 实现高性能文生图。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

前言

在本文中,我们将使用基于 KerasCV 实现的 Stable Diffusion 模型进行图像生成,这是由 stable.ai 开发的文本生成图像的多模态模型。

Stable Diffusion 是一种功能强大的开源的文本到图像生成模型。虽然市场上存在多种开源实现可以让用户根据文本提示轻松创建图像,但 KerasCV 有一些独特的优势来加速图片生成,其中包括 XLA 编译混合精度支持等特性。所以本文除了介绍如何使用 KerasCV 内置的 StableDiffusion 模块来生成图像,另外我们还通过对比展示了使用 KerasCV 特性所带来的图片加速优势。

准备

  • N 卡,建议 24 G ,在下文使用 KerasCV 实际生成图像过程中至少需要 20 G
  • 安装 python 3.10 的 anaconda 虚拟环境
  • 安装 tensorflow gpu 2.10
  • 一颗充满想象力的大脑,主要是用来构建自己的文本 prompt

这里有一个工具函数 plot_images ,主要是用来把模型生成的图像进行展示。

scss
复制代码
def plot_images(images):
    plt.figure(figsize=(20, 20))
    for i in range(len(images)):
        plt.subplot(1, len(images), i + 1)
        plt.imshow(images[i])
        plt.axis("off")
    plt.show()

模型工作原理

超分辨率工作可以训练深度学习模型来对输入图像进行去噪,从而将其转换为更高分辨率的效果。为了实现这一目的,深度学习模型并不是通过恢复低分辨率输入图像中丢失的信息做到的,而是模型使用其训练数据分布来填充最有可能的给定输入的视觉细节。

然后将这个想法推向极限,在纯噪声上运行这样的模型,然后使用该模型不断去噪最终产生一个全新的图像。这就是潜在扩散模型的关键思想,在 2020 年的 High-Resolution Image Synthesis with Latent Diffusion Models 中提出。

现在要从潜在扩散过渡到文本生成图像的效果,需要添加关键字控制生成图像的能力,简单来说就是将一段文本的向量加入到到带噪图片中,然后在数据集上训练模型即可得到我们想要的文生图模型 Stable Diffusion 。这就产生了 Stable Diffusion 架构,主要由三部分组成:

  • text encoder:可将用户的提示转换为向量。
  • diffusion model:反复对 64x64 潜在图像进行去噪。
  • decoder:将最终生成的 64x64 潜在图像转换为更高分辨率的 512x512 图像。

基本模型架构图如下:

使用 Keras 的 Stable Diffusion 实现高性能文生图,keras,stable diffusion,人工智能,深度学习,pytorch,机器学习,python

benchmark

我们使用 keras_cv 中的 StableDiffusion 模块构造一个文生图基准模型 model ,在对模型进行基准测试之前,先执行一次 text_to_image 函数来预热模型,以确保 TensorFlow graph已被跟踪,这样在后续使用模型进行推理时候的速度测试才是准确的。可以从日志中看到第一次运行的时间是 22 s ,这个不用去管他,我们只看第二个时间。

我这里的提示词是“There is a pink BMW Mini at the exhibition where the lights focus” ,生成 3 张图像,耗时 10.32 s

执行结束之后运行 keras.backend.clear_session() 清除刚刚运行的模型,以保证不会影响到后面的试验。

ini
复制代码
model = keras_cv.models.StableDiffusion(img_width=512, img_height=512, jit_compile=False)
model.text_to_image("warming up the model", batch_size=3)
start = time.time()
images = model.text_to_image("There is a pink BMW Mini at the exhibition where the lights focus", batch_size=3)
print(f"Standard model: {(time.time() - start):.2f} seconds")
plot_images(images)
keras.backend.clear_session()

日志打印:

arduino
复制代码
25/25 [==============================] - 22s 399ms/step
25/25 [==============================] - 10s 400ms/step
Standard model: 10.32 seconds

使用 Keras 的 Stable Diffusion 实现高性能文生图,keras,stable diffusion,人工智能,深度学习,pytorch,机器学习,python

benchmark + Mixed precision

正如日志中打印的信息可以看到,我们这里构建的模型现在使用混合精度计算,利用 float16 运算的速度进行计算,同时以 float32 精度存储变量,这是因为 NVIDIA GPU 内核处理同样的操作,使用 float16 比 float32 要快得多。

我们这里和上面一样先将模型预热加载,然后针对我的提示词“There is a black BMW Mini at the exhibition where the lights focus”生成了 3 张图像,耗时 5.30s ,可以看到在 benchmark 基础上使用混合精度生成速度提升将近一倍。

scss
复制代码
keras.mixed_precision.set_global_policy("mixed_float16")
model = keras_cv.models.StableDiffusion(jit_compile=False)
print("Compute dtype:", model.diffusion_model.compute_dtype)
print("Variable dtype:",  model.diffusion_model.variable_dtype)
model.text_to_image("warming up the model", batch_size=3)
start = time.time()
images = model.text_to_image( "There is a black BMW Mini at the exhibition where the lights focus", batch_size=3,)
print(f"Mixed precision model: {(time.time() - start):.2f} seconds")
plot_images(images)
keras.backend.clear_session()

日志打印:

yaml
复制代码
Compute dtype: float16
Variable dtype: float32
25/25 [==============================] - 9s 205ms/step
25/25 [==============================] - 5s 202ms/step
Mixed precision model: 5.30 seconds

使用 Keras 的 Stable Diffusion 实现高性能文生图,keras,stable diffusion,人工智能,深度学习,pytorch,机器学习,python

benchmark + XLA Compilation

XLA(加速线性代数)是一种用于机器学习的开源编译器。XLA 编译器从 PyTorch、TensorFlow 和 JAX 等常用框架中获取模型,并优化模型以在不同的硬件平台(包括 GPU、CPU 和机器学习加速器)上实现高性能执行。

TensorFlow 和 JAX 附带 XLA , keras_cv.models.StableDiffusion 支持开箱即用的 jit_compile 参数。 将此参数设置为 True 可启用 XLA 编译,从而显著提高速度。

从日志中可以看到,在 benchmark 基础上使用 XLA 生成时间减少了 3.34 s

ini
复制代码
keras.mixed_precision.set_global_policy("float32")
model = keras_cv.models.StableDiffusion(jit_compile=True)
model.text_to_image("warming up the model", batch_size=3)
start = time.time()
images = model.text_to_image("There is a black ford mustang at the exhibition where the lights focus", batch_size=3, )
print(f"With XLA: {(time.time() - start):.2f} seconds")
plot_images(images)
keras.backend.clear_session()

日志打印:

vbnet
复制代码
25/25 [==============================] - 34s 271ms/step
25/25 [==============================] - 7s 271ms/step
With XLA: 6.98 seconds

使用 Keras 的 Stable Diffusion 实现高性能文生图,keras,stable diffusion,人工智能,深度学习,pytorch,机器学习,python

benchmark + Mixed precision + XLA Compilation

最后我们在 benchmark 基础上同时使用混合精度计算和 XLA 编译,最终生成同样的 3 张图像,时间仅为 3.96s ,与 benchmark 相比生成时间减少了 6.36 s ,生成时间大幅缩短!

ini
复制代码
keras.mixed_precision.set_global_policy("mixed_float16")
model = keras_cv.models.StableDiffusion(jit_compile=True)
model.text_to_image("warming up the model", batch_size=3, )
start = time.time()
images = model.text_to_image( "There is a purple ford mustang at the exhibition where the lights focus", batch_size=3,)
print(f"XLA + mixed precision: {(time.time() - start):.2f} seconds")
plot_images(images)
keras.backend.clear_session()

日志打印:

arduino
复制代码
25/25 [==============================] - 28s 144ms/step
25/25 [==============================] - 4s 152ms/step
XLA + mixed precision: 3.96 seconds

使用 Keras 的 Stable Diffusion 实现高性能文生图,keras,stable diffusion,人工智能,深度学习,pytorch,机器学习,python

结论

四种情况的耗时对比结果,展示了使用 KerasCV 生成图片确实在速度方面有特别之处:

  • benchmark : 10.32s
  • benchmark + Mixed precision :5.3 s
  • benchmark + XLA Compilation : 6.98s
  • benchmark + Mixed precision + XLA Compilation : 3.96s

最后

为了帮助大家更好的学习人工智能,这里给大家准备了一份人工智能入门/进阶学习资料,里面的内容都是适合学习的笔记和资料,不懂编程也能听懂、看懂,所有资料朋友们如果有需要全套人工智能入门+进阶学习资源包,可以在评论区或扫.码领取哦)~

在线教程

  • 麻省理工学院人工智能视频教程 – 麻省理工人工智能课程
  • 人工智能入门 – 人工智能基础学习。Peter Norvig举办的课程
  • EdX 人工智能 – 此课程讲授人工智能计算机系统设计的基本概念和技术。
  • 人工智能中的计划 – 计划是人工智能系统的基础部分之一。在这个课程中,你将会学习到让机器人执行一系列动作所需要的基本算法。
  • 机器人人工智能 – 这个课程将会教授你实现人工智能的基本方法,包括:概率推算,计划和搜索,本地化,跟踪和控制,全部都是围绕有关机器人设计。
  • 机器学习 – 有指导和无指导情况下的基本机器学习算法
  • 机器学习中的神经网络 – 智能神经网络上的算法和实践经验
  • 斯坦福统计学习

😝有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓
使用 Keras 的 Stable Diffusion 实现高性能文生图,keras,stable diffusion,人工智能,深度学习,pytorch,机器学习,python
使用 Keras 的 Stable Diffusion 实现高性能文生图,keras,stable diffusion,人工智能,深度学习,pytorch,机器学习,python

人工智能书籍

  • OpenCV(中文版).(布拉德斯基等)
  • OpenCV+3计算机视觉++Python语言实现+第二版
  • OpenCV3编程入门 毛星云编著
  • 数字图像处理_第三版
  • 人工智能:一种现代的方法
  • 深度学习面试宝典
  • 深度学习之PyTorch物体检测实战
  • 吴恩达DeepLearning.ai中文版笔记
  • 计算机视觉中的多视图几何
  • PyTorch-官方推荐教程-英文版
  • 《神经网络与深度学习》(邱锡鹏-20191121)

  • 使用 Keras 的 Stable Diffusion 实现高性能文生图,keras,stable diffusion,人工智能,深度学习,pytorch,机器学习,python
    😝有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓
    使用 Keras 的 Stable Diffusion 实现高性能文生图,keras,stable diffusion,人工智能,深度学习,pytorch,机器学习,python

第一阶段:零基础入门(3-6个月)

新手应首先通过少而精的学习,看到全景图,建立大局观。 通过完成小实验,建立信心,才能避免“从入门到放弃”的尴尬。因此,第一阶段只推荐4本最必要的书(而且这些书到了第二、三阶段也能继续用),入门以后,在后续学习中再“哪里不会补哪里”即可。

使用 Keras 的 Stable Diffusion 实现高性能文生图,keras,stable diffusion,人工智能,深度学习,pytorch,机器学习,python

第二阶段:基础进阶(3-6个月)

熟读《机器学习算法的数学解析与Python实现》并动手实践后,你已经对机器学习有了基本的了解,不再是小白了。这时可以开始触类旁通,学习热门技术,加强实践水平。在深入学习的同时,也可以探索自己感兴趣的方向,为求职面试打好基础。

使用 Keras 的 Stable Diffusion 实现高性能文生图,keras,stable diffusion,人工智能,深度学习,pytorch,机器学习,python

第三阶段:工作应用

使用 Keras 的 Stable Diffusion 实现高性能文生图,keras,stable diffusion,人工智能,深度学习,pytorch,机器学习,python

这一阶段你已经不再需要引导,只需要一些推荐书目。如果你从入门时就确认了未来的工作方向,可以在第二阶段就提前阅读相关入门书籍(对应“商业落地五大方向”中的前两本),然后再“哪里不会补哪里”。

使用 Keras 的 Stable Diffusion 实现高性能文生图,keras,stable diffusion,人工智能,深度学习,pytorch,机器学习,python

使用 Keras 的 Stable Diffusion 实现高性能文生图,keras,stable diffusion,人工智能,深度学习,pytorch,机器学习,python
😝有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓
使用 Keras 的 Stable Diffusion 实现高性能文生图,keras,stable diffusion,人工智能,深度学习,pytorch,机器学习,python文章来源地址https://www.toymoban.com/news/detail-841984.html

到了这里,关于使用 Keras 的 Stable Diffusion 实现高性能文生图的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 002. 使用最小堆实现高性能定时器实现

    定时器原理 – 任务的容器(要求:数据结构有序或相对有序;能快速查找最近触发的定时任务) + 触发条件(可以通过带有time_out的系统函数,如epoll_wait的最后一个参数); 最小堆的特点 – 是一颗完全二叉树; – 某个节点的值总是小于等于它子节点的值(即定位到最小值的时间

    2024年02月07日
    浏览(36)
  • Kafka是如何实现高性能IO

    ​ 批量处理是一种非常有效的提升系统吞吐量的方法。在 Kafka 内部,消息都是以“批”为单位处理的。一批消息从发送端到接收端,是如何在 Kafka 中流转的呢? Kafka 的 Producer 只提供了单条发送的 send() 方法,并没有提供任何批量发送的接口。 kafka 根本就没有提供单条发送

    2024年02月11日
    浏览(34)
  • 通过Span实现高性能数组,实例解析

    SpanT 是 C# 7.2 引入的一个强大的数据结构,用于表示内存中的一块连续数据。它可以用于实现高性能的数组操作,而无需额外的内存分配。在本文中,我将详细介绍如何使用 SpanT 来实现高性能数组操作,并提供一些示例代码来说明其用法。 SpanT 是 System.Memory 命名空间中的结构

    2024年02月05日
    浏览(43)
  • Docker与Kafka:实现高性能流处理

    Docker 和 Kafka 都是现代技术中的重要组成部分,它们各自在不同领域发挥着重要作用。Docker 是一个开源的应用容器引擎,用于自动化部署、创建、运行和管理应用程序。Kafka 是一个分布式流处理平台,用于构建实时数据流管道和流处理应用程序。 在大数据和实时数据处理领域

    2024年02月20日
    浏览(38)
  • 【消息队列】Kafka如何实现高性能IO

    我们直到Kafka是一个自称高性能的消息队列引擎,一般来说对于中间件的设计需要从计算、存储、网络三方面进行下手,而消息从产生到消费,也会经历多个流程,比如在生产者端采用异步同步方式发送,采用高效的压缩算法,高效的序列化方式,以及网络IO等。那么Kafka主要

    2023年04月13日
    浏览(31)
  • uni-app如何实现高性能

    这篇文章主要讲解uni-app如何实现高性能的问题? 什么是uni-app? 简单说一下什么是uni-app,uni-app是继承自vue.js,对vue做了轻度定制,并且实现了完整的组件化开发,并且支持多端发布的一种架构,开发的项目可适配多平台。 过内前端开发的大致分歧  国内前端开发生态现在的

    2024年04月11日
    浏览(26)
  • kafka高吞吐、低延时、高性能的实现原理

    作者:源码时代-Raymon老师 Kafka是大数据领域无处不在的消息中间件,目前广泛使用在企业内部的实时数据管道,并帮助企业构建自己的流计算应用程序。Kafka虽然是基于磁盘做的数据存储,但却具有高性能、高吞吐、低延时的特点,其吞吐量动辄几万、几十上百万,这其中的

    2024年02月04日
    浏览(39)
  • 移动端高性能Unity播放器实现方案

    前情提要: 视听体验再进化——如何在24小时内全面升级你的视频应用 如何打造新时代的终端播放产品? 随着VR、AR、元宇宙等新玩法的出现,Unity平台的视频播放需求逐渐增加,比如下面两个动图就是在百度真实的案例。前者是演唱会场景,后者则是一个演讲会场。 通过这

    2024年02月08日
    浏览(30)
  • C++高性能服务器网络框架设计与实现

    这篇文章将从两个方面来介绍,一个是服务器中的基础的网络通信部件;另外一个是,如何利用这些基础通信部件整合成一个完整的高效的服务器框架。注意:本文以下内容中的客户端是相对概念,指的是连接到当前讨论的服务程序的终端,所以这里的客户端既可能是我们传

    2024年02月04日
    浏览(40)
  • 高性能计算的矩阵乘法优化 - Python + OpenMP实现

    关于上一节读者某些疑问 :为什么你用进程并行不是线程并行? 回答 :由于Python解释器有GIL(全局解释器锁),在单进程的解释器上有线程安全锁,也就是说每次只能一个线程访问解释器,因此Python在语法上的多线程(multithreads)实现是不会提高并行性能的。 这一点和C

    2024年02月15日
    浏览(51)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包