灰狼优化算法(MOGWO)

这篇具有很好参考价值的文章主要介绍了灰狼优化算法(MOGWO)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

灰狼优化算法(MOGWO)

摘要

  1. 固定大小的外部档案用来保存帕累托优化解
  2. 在多目标搜索空间中,这个档案被用来定义狼群社会等级和捕猎行为
  3. 这个算法在10个多目标测试集进行测试,并与MOEA/D和MOPSO进行对比

引言

  1. 将多个目标集成一个单一的目标

两个缺点:一个均匀分布的权重不能保证生成一组均匀分布的帕累托优化解集;由于不能使用负权重,且所有权重之和必须为常数,该方法无法找帕累托最优前沿的非凸区域。

  1. MOPSO的收敛速度非常快,在多目标优化中容易出现假帕累托最优前沿过早终止的问题

GWO

该算法是模拟灰狼的社会领导关系和捕猎技术,为了模拟灰狼在狩猎过程中的包围行为,除了社会领导外,提出了一下方程:

灰狼优化算法(MOGWO)

t表示当前代数,A和C是向量系数,Xp表示猎物位置,X表示一只灰狼的位置,A和C的计算公式:

灰狼优化算法(MOGWO)

a是在迭代过程中从2线性减到0,r1和r2是[0,1]中的随机数,alpha、beta、gamma是前三个最优解。

灰狼优化算法(MOGWO)

A的随机值大于1或小于-1,保证了狼群和猎物的偏离,C有助于GWO在优化过程中表现出更随机的行为,有利于规避局部最优。当A的绝对值大于1时,狼群偏离猎物,当A的绝对值小于1时,狼群向猎物收敛。

MOGWO

MOGWO比起GWO多了两个新增部分:

  1. 一个档案用于存储所得帕累托最优解集和进行非支配排序
  2. 选择策略,用于选择alpha、beta、gamma作为领导。

MOGWO的伪代码如下:

MOGWO算法的收敛性是有保证的,因为它利用了相同的数学模型来搜索最优解。事实证明,GWO要求搜索智能体在优化的初期突然改变位置,在优化的后期逐渐改变位置。MOGWO算法继承了GWO的所有特征,这意味着搜索智能体以相同的方式探索和开发搜索空间。主要的区别是,MOGWO围绕一组存档个体进行搜索(即使存档没有变化,也可能不同),而GWO只保存和改进三个最好的解。

MOGWO部分源代码如下,需要完整代码请联系我(免费)。

%% 清理空间

clear all

clc

close all

%% MOGWO算法参数

drawing_flag = 1;

% 测试函数及其细节确定

TestProblem='UF1';

nVar=10;

fobj = cec09(TestProblem);

xrange = xboundary(TestProblem, nVar);

lb=xrange(:,1)';

ub=xrange(:,2)';

VarSize=[1 nVar];

% 迭代次数、种群数量、存档数量

GreyWolves_num=100;

MaxIt=200; % Maximum Number of Iterations

Archive_size=100; % Repository Size

% 网格机制的参数

alpha=0.1; % Grid Inflation Parameter

nGrid=10; % Number of Grids per each Dimension

beta=4; % Leader Selection Pressure Parameter

gamma=2;

%% 种群初始化

GreyWolves=CreateEmptyParticle(GreyWolves_num);

for i=1:GreyWolves_num

​ GreyWolves(i).Velocity=0;%灰狼的初始速度为0

​ GreyWolves(i).Position=zeros(1,nVar);%灰狼的初始位置也为0

​ for j=1:nVar

​ GreyWolves(i).Position(1,j)=unifrnd(lb(j),ub(j),1);%灰狼的位置

​ end

​ GreyWolves(i).Cost=fobj(GreyWolves(i).Position')';

​ GreyWolves(i).Best.Position=GreyWolves(i).Position;

​ GreyWolves(i).Best.Cost=GreyWolves(i).Cost;

end文章来源地址https://www.toymoban.com/news/detail-842055.html

% 确定支配关系

GreyWolves=DetermineDomination(GreyWolves);

% 非支配解存档

Archive=GetNonDominatedParticles(GreyWolves);

% 网格机制

Archive_costs=GetCosts(Archive); % 存档种群的适应度

G=CreateHypercubes(Archive_costs,nGrid,alpha);

for i=1:numel(Archive)

​ [Archive(i).GridIndex Archive(i).GridSubIndex]=GetGridIndex(Archive(i),G);

end

%% 迭代

for it=1:MaxIt

​ a=2-it*((2)/MaxIt);

​ for i=1:GreyWolves_num

​ clear rep2

​ clear rep3

​ % 选头狼

​ % Choose the alpha, beta, and delta grey wolves

​ Delta=SelectLeader(Archive,beta);

​ Beta=SelectLeader(Archive,beta);

​ Alpha=SelectLeader(Archive,beta);

​ % If there are less than three solutions in the least crowded

​ % hypercube, the second least crowded hypercube is also found

​ % to choose other leaders from.

​ if size(Archive,1)>1

​ counter=0;

​ for newi=1:size(Archive,1)

​ if sum(Delta.Position=Archive(newi).Position)=0

​ counter=counter+1;

​ rep2(counter,1)=Archive(newi);

​ end

​ end

​ Beta=SelectLeader(rep2,beta);

​ end

​ % This scenario is the same if the second least crowded hypercube

​ % has one solution, so the delta leader should be chosen from the

​ % third least crowded hypercube.

​ if size(Archive,1)>2

​ counter=0;

​ for newi=1:size(rep2,1)

​ if sum(Beta.Position=rep2(newi).Position)=0

​ counter=counter+1;

​ rep3(counter,1)=rep2(newi);

​ end

​ end

​ Alpha=SelectLeader(rep3,beta);

​ end

​ % 同GWO一样

​ % Eq.(3.4) in the paper

​ c=2.*rand(1, nVar);

​ % Eq.(3.1) in the paper

​ D=abs(c.*Delta.Position-GreyWolves(i).Position);

​ % Eq.(3.3) in the paper

​ A=2.a.rand(1, nVar)-a;

​ % Eq.(3.8) in the paper

​ X1=Delta.Position-A.*abs(D);

​ % Eq.(3.4) in the paper

​ c=2.*rand(1, nVar);

​ % Eq.(3.1) in the paper

​ D=abs(c.*Beta.Position-GreyWolves(i).Position);

​ % Eq.(3.3) in the paper

​ A=2.a.rand()-a;

​ % Eq.(3.9) in the paper

​ X2=Beta.Position-A.*abs(D);

​ % Eq.(3.4) in the paper

​ c=2.*rand(1, nVar);

​ % Eq.(3.1) in the paper

​ D=abs(c.*Alpha.Position-GreyWolves(i).Position);

​ % Eq.(3.3) in the paper

​ A=2.a.rand()-a;

​ % Eq.(3.10) in the paper

​ X3=Alpha.Position-A.*abs(D);

​ % Eq.(3.11) in the paper

​ GreyWolves(i).Position=(X1+X2+X3)./3;

​ % Boundary checking

​ GreyWolves(i).Position=min(max(GreyWolves(i).Position,lb),ub);

​ GreyWolves(i).Cost=fobj(GreyWolves(i).Position')';

​ end

​ % 支配关系、存档、网格更新

​ GreyWolves=DetermineDomination(GreyWolves);

​ non_dominated_wolves=GetNonDominatedParticles(GreyWolves);

​ Archive=[Archive

​ non_dominated_wolves];

​ Archive=DetermineDomination(Archive);

​ Archive=GetNonDominatedParticles(Archive);

​ for i=1:numel(Archive)

​ [Archive(i).GridIndex Archive(i).GridSubIndex]=GetGridIndex(Archive(i),G);

​ end

​ if numel(Archive)>Archive_size

​ EXTRA=numel(Archive)-Archive_size;

​ Archive=DeleteFromRep(Archive,EXTRA,gamma);

​ Archive_costs=GetCosts(Archive);

​ G=CreateHypercubes(Archive_costs,nGrid,alpha);

​ end

​ disp(['In iteration ' num2str(it) ': Number of solutions in the archive = ' num2str(numel(Archive))]);

​ save results

​ % Results

​ costs=GetCosts(GreyWolves);

​ Archive_costs=GetCosts(Archive);

​ hold off

​ plot(costs(1,:),costs(2,:),'k.');

​ hold on

​ plot(Archive_costs(1,:),Archive_costs(2,:),'rd');

​ legend('Grey wolves','Non-dominated solutions');

​ drawnow

end

到了这里,关于灰狼优化算法(MOGWO)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 灰狼优化算法(GWO)

    一、背景知识 灰狼优化算法(Grey Wolf Optimizer, GWO),由澳大利亚格里菲斯大学学者Mirjalili等人于2014年提出来的一种群智能优化算法。灵感来自于灰狼群体捕食行为。GWO算法模拟了自然界中灰狼的领导等级和狩猎机制。将灰狼分为四种类型,用来模拟等级阶层。此外,还模拟了

    2024年04月14日
    浏览(44)
  • 五种多目标优化算法(MOGWO、MOJS、NSWOA、MOPSO、MOAHA)性能对比(提供MATLAB代码)

    1.1MOGWO 1.2MOJS 1.3NSWOA 1.4MOPSO 1.5MOAHA 为了测试5种算法的性能将其求解9个多目标测试函数(zdt1、zdt2 、zdt3、 zdt4、 zdt6 、Schaffer、 Kursawe 、Viennet2、 Viennet3),其中Viennet2 与Viennet3的目标为3,其余测试函数的目标为2,并采用6种评价指标(IGD、GD、HV、Coverage、Spread、Spacing)进行评

    2024年02月21日
    浏览(46)
  • 灰狼优化(GWO)算法(含MATLAB代码)

    先做一个声明:文章是由我的个人公众号中的推送直接复制粘贴而来,因此对智能优化算法感兴趣的朋友,可关注我的个人公众号: 启发式算法讨论 。 文献[1]中的灰狼优化(Grey Wolf Optimizer, GWO)算法是2014年提出的一种群智能优化算法。严格来讲,应该叫灰狼优化器。GWO简单易

    2024年02月05日
    浏览(58)
  • 【启发式算法】灰狼优化算法【附python实现代码】

    写在前面: 首先感谢兄弟们的订阅,让我有创作的动力,在创作过程我会尽最大能力,保证作品的质量,如果有问题,可以私信我,让我们携手共进,共创辉煌。 路虽远,行则将至;事虽难,做则必成。只要有愚公移山的志气、滴水穿石的毅力,脚踏实地,埋头苦干,积跬

    2024年02月16日
    浏览(35)
  • 【算法】灰狼算法GWO优化支持向量机回归SVR模型

    GWO是一种基于灰狼行为的 优化算法 ,由Mirjalili等人于2014年提出。该算法模拟灰狼群的捕猎行为,通过模拟狼群中的Alpha、Beta、Delta三种角色的行为来实现全局优化,具有收敛速度快、精度高、易于实现等特点。 初始化狼群位置和适应度函数。 计算每个狼的适应度,并记录

    2023年04月22日
    浏览(98)
  • Python实现GWO智能灰狼优化算法优化XGBoost分类模型(XGBClassifier算法)项目实战

    说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。 灰狼优化算法(GWO),由澳大利亚格里菲斯大学学者 Mirjalili 等人于2014年提出来的一种群智能优化算法。灵感来自于灰狼群体捕食行为。优点:较强的

    2023年04月13日
    浏览(61)
  • GWO灰狼优化算法综述(Grey Wolf Optimization)

           GWO通过模拟灰狼群体捕食行为,基于狼群群体协作的机制来达到优化的目的。          GWO算法具有结构简单、需要调节的参数少、容易实现等特点,其中存在能够自适应调整的收敛因子以及信息反馈机制,能够在局部寻优与全局搜索之间实现平衡,因此在对问题的

    2024年02月01日
    浏览(55)
  • 灰狼优化算法GWO的理论知识以及python代码实现

    GWO 算法的等级结构 灰狼优化算法是模拟食物链顶端的捕食者狼群的捕食行为产生的算法。灰狼大都喜欢群居, 且具有非常严格的社会等级制度,如图 1 金字塔结 构的等级制度所示。 GWO 算法的数学模型 ​ 在 GWO 算法数学建模中,每只灰狼代表种群 中 1 个候选解,将最优解

    2023年04月12日
    浏览(56)
  • 五种多目标优化算法(MOAHA、MOGWO、NSWOA、MOPSO、NSGA2)性能对比,包含6种评价指标,9个测试函数(提供MATLAB代码)

    1.1MOAHA 1.2MOGWO 1.3NSWOA 1.4MOPSO 1.5NSGA2 为了测试5种算法的性能将其求解9个多目标测试函数(zdt1、zdt2 、zdt3、 zdt4、 zdt6 、Schaffer、 Kursawe 、Viennet2、 Viennet3),其中Viennet2 与Viennet3的目标数为3,其余测试函数的目标数为2,并采用6种评价指标(IGD、GD、HV、Coverage、Spread、Spacing)进

    2024年02月21日
    浏览(54)
  • 五种多目标优化算法(MOJS、MOGWO、NSWOA、MOPSO、NSGA2)性能对比,包含6种评价指标,9个测试函数(提供MATLAB代码)

    1.1MOJS 1.2MOGWO 1.3NSWOA 1.4MOPSO 1.5NSGA2 为了测试5种算法的性能将其求解9个多目标测试函数(zdt1、zdt2 、zdt3、 zdt4、 zdt6 、Schaffer、 Kursawe 、Viennet2、 Viennet3),其中Viennet2 与Viennet3的目标为3,其余测试函数的目标为2,并采用6种评价指标(IGD、GD、HV、Coverage、Spread、Spacing)进行评

    2024年02月21日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包