线性代数(一)——向量基础

这篇具有很好参考价值的文章主要介绍了线性代数(一)——向量基础。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

线性代数的核心是向量的加和乘两种运算的组合,本篇博客为线性代数的一个引子,主要从向量、线性组合和矩阵逐步引出线性代数的相关知识。

1、向量和线性组合

首先介绍的是向量相关,向量是基础。
已知列向量: υ = [ v 1 v 2 ] \boldsymbol{\upsilon}=\left[\begin{matrix} v_1 \\ v_2\end{matrix} \right] υ=[v1v2] ω = [ w 1 w 2 ] \boldsymbol{\omega}=\left[\begin{matrix} w_1 \\ w_2\end{matrix} \right] ω=[w1w2]

向量加法: υ + ω = [ v 1 + w 1 v 2 + w 2 ] \boldsymbol{\upsilon}+\boldsymbol{\omega}=\left[\begin{matrix} v_1+w_1 \\ v_2+w_2\end{matrix} \right] υ+ω=[v1+w1v2+w2]

纯量乘法: c υ = [ c v 1 c v 2 ] c\boldsymbol{\upsilon}=\left[\begin{matrix} cv_1 \\ cv_2\end{matrix} \right] cυ=[cv1cv2] c c c是标量;

线性组合:我们将 υ \boldsymbol{\upsilon} υ ω \boldsymbol{\omega} ω的加法运算和标量乘法运算结合起来,得到的结果称为 υ \boldsymbol{\upsilon} υ ω \boldsymbol{\omega} ω的线性组合,即 c υ + d ω c\boldsymbol{\upsilon}+d\boldsymbol{\omega} cυ+dω
两个向量的线性组合就是线性代数的最简单的形式。

下图展示了向量加法的结果:
线性代数(一)——向量基础,math,算法,线性代数
Tip:列向量 υ = [ a b c ] \boldsymbol{\upsilon}=\left[\begin{matrix} a \\ b \\ c\end{matrix} \right] υ=abc也可以写为 υ = ( a , b , c ) \boldsymbol{\upsilon}=( a , b , c ) υ=(a,b,c),这两种形式都是表示列向量,后一种可以节约书写空间。另外,行向量表示为 υ = [ a , b , c ] \boldsymbol{\upsilon}=[ a , b , c ] υ=[a,b,c],平躺着并用方括号表示。

2、向量的模和点乘

点乘(内积):点乘为两个向量对应位置上元素乘积的和。
向量 υ = ( v 1 , v 2 , v 3 , . . . , v n ) \boldsymbol{\upsilon}=( v_1 , v_2 , v_3,...,v_n ) υ=(v1,v2,v3,...,vn)和向量 ω = ( w 1 , w 2 , w 3 , . . . , w n ) \boldsymbol{\omega}=( w_1 , w_2 , w_3,...,w_n ) ω=(w1,w2,w3,...,wn)的点乘表示为:
υ ⋅ ω = v 1 w 1 + v 2 w 2 + . . . + v n w n \boldsymbol{\upsilon} \cdot \boldsymbol{\omega}=v_1w_1+v_2w_2+...+v_nw_n υω=v1w1+v2w2+...+vnwn
向量 υ = ( v 1 , v 2 , v 3 , . . . , v n ) \boldsymbol{\upsilon}=( v_1 , v_2 , v_3,...,v_n ) υ=(v1,v2,v3,...,vn)和其自身的点乘为:
υ ⋅ υ = v 1 2 + v 2 2 + . . . + v n 2 = ( v 1 − 0 ) 2 + ( v 2 − 0 ) 2 + . . . + ( v n − 0 ) 2 \boldsymbol{\upsilon} \cdot \boldsymbol{\upsilon}=v^2_1+v^2_2+...+v^2_n=(v_1-0)^2+(v_2-0)^2+...+(v_n-0)^2 υυ=v12+v22+...+vn2=(v10)2+(v20)2+...+(vn0)2
向量的长度(模)
则在 n n n维坐标系中, υ ⋅ υ \boldsymbol{\upsilon} \cdot \boldsymbol{\upsilon} υυ表示点 ( v 1 , v 2 , v 3 , . . . , v n ) ( v_1 , v_2 , v_3,...,v_n) (v1,v2,v3,...,vn)到坐标原点的距离的平方,即向量 υ \boldsymbol{\upsilon} υ的长度的平方,所以向量 υ \boldsymbol{\upsilon} υ的长度为:
l e n g t h = ∥ υ ∥ = υ ⋅ υ = ( v 1 2 + v 2 2 + . . . + v n 2 ) 1 / 2 \mathbf{length}= \left \|\boldsymbol{\upsilon}\right\|=\sqrt{\boldsymbol{\upsilon} \cdot \boldsymbol{\upsilon}}=(v^2_1+v^2_2+...+v^2_n)^{1/2} length=υ=υυ =(v12+v22+...+vn2)1/2
如下图所示:
线性代数(一)——向量基础,math,算法,线性代数
单位向量
单位向量是长度等于1的向量,则向量 υ \boldsymbol{\upsilon} υ的单位向量 u \boldsymbol{u} u为任何非零向量除以该向量的长度,即:
u = υ ∥ υ ∥ \boldsymbol{u}=\frac{\boldsymbol{\upsilon}}{ \left \|\boldsymbol{\upsilon}\right\|} u=υυ
下图为单位向量的示意图:
线性代数(一)——向量基础,math,算法,线性代数
对于非零向量,当向量 υ \boldsymbol{\upsilon} υ垂直向量 ω \boldsymbol{\omega} ω时,它们的点积为零,即:
υ ⋅ ω = 0 \boldsymbol{\upsilon} \cdot \boldsymbol{\omega}=0 υω=0
可结合勾股定理进行证明。
向量夹角
设向量 υ \boldsymbol{\upsilon} υ和向量 ω \boldsymbol{\omega} ω的夹角为 θ \theta θ,当 υ ⋅ ω ! = 0 \boldsymbol{\upsilon} \cdot \boldsymbol{\omega}!=0 υω!=0时,会有:
{ θ < 9 0 ∘ , υ ⋅ ω > 0 θ > 9 0 ∘ , υ ⋅ ω < 0 \left\{\begin{array}{cc} \theta<90^{\circ}, & \boldsymbol{\upsilon} \cdot \boldsymbol{\omega}>0\\ \theta>90^{\circ}, & \boldsymbol{\upsilon} \cdot \boldsymbol{\omega}<0 \end{array}\right. {θ<90,θ>90,υω>0υω<0
除此之外,两个单位向量的点乘也表示两个向量夹角 θ \theta θ c o s i n e cosine cosine余弦值:
u ⋅ U = c o s θ , u ⋅ U ≤ 1 \boldsymbol{u} \cdot \boldsymbol{U}=cos{\theta},\boldsymbol{u} \cdot \boldsymbol{U}\leq1 uU=cosθuU1
线性代数(一)——向量基础,math,算法,线性代数
那么对于非单位向量的向量 υ \boldsymbol{\upsilon} υ和向量 ω \boldsymbol{\omega} ω的夹角的余弦值应该怎么表示?
综上所述,应该为这两个向量对应的单位向量的点乘,即:
c o s θ = ( υ ∥ υ ∥ ) ⋅ ( ω ∥ ω ∥ ) = υ ⋅ ω ∥ υ ∥ ∥ ω ∥ ≤ 1 cos\theta = (\frac{\boldsymbol{\upsilon}}{\left \|\boldsymbol{\upsilon}\right\|}) \cdot (\frac{\boldsymbol{\omega}}{\left \|\boldsymbol{\omega}\right\|})=\frac{\boldsymbol{\upsilon} \cdot \boldsymbol{\omega}}{\left \|\boldsymbol{\upsilon}\right\|\left \|\boldsymbol{\omega}\right\|}\leq1 cosθ=(υυ)(ωω)=υωυω1

由此可引出两个著名的不等式:
柯西-施瓦兹-布尼亚科夫斯基不等式 ∣ υ ⋅ ω ∣ ≤ ∥ υ ∥ ∥ ω ∥ | \boldsymbol{\upsilon} \cdot \boldsymbol{\omega}|\leq{\left \|\boldsymbol{\upsilon}\right\|\left \|\boldsymbol{\omega}\right\|} υωυω
三角不等式: ∥ υ + ω ∥ ≤ ∥ υ ∥ + ∥ ω ∥ {\left \|\boldsymbol{\upsilon}+\boldsymbol{\omega}\right\|}\leq{\left \|\boldsymbol{\upsilon}\right\|+\left \|\boldsymbol{\omega}\right\|} υ+ωυ+ω

3、矩阵

接下来,我们从向量过度到矩阵,用矩阵表示线性组合。前面介绍了向量之间的运算,那么当一个矩阵乘以一个向量应如何去理解呢?
首先给定三个向量:
u = [ 1 − 1 0 ] , υ = [ 0 1 − 1 ] , ω = [ 0 0 1 ] . \boldsymbol{u}=\left[\begin{matrix} 1 \\ -1 \\ 0\end{matrix} \right],\boldsymbol{\upsilon}=\left[\begin{matrix} 0 \\ 1 \\ -1\end{matrix} \right],\boldsymbol{\omega}=\left[\begin{matrix} 0 \\ 0 \\ 1\end{matrix} \right]. u=110,υ=011,ω=001.
则这三个三维向量的线性组合为: x 1 u + x 2 υ + x 3 ω x_1\boldsymbol{u}+x_2\boldsymbol{\upsilon}+x_3\boldsymbol{\omega} x1u+x2υ+x3ω,即:
x 1 [ 1 − 1 0 ] + x 2 [ 0 1 − 1 ] + x 3 [ 0 0 1 ] = [ x 1 x 2 − x 1 x 3 − x 2 ] x_1\left[\begin{matrix} 1 \\ -1 \\ 0\end{matrix} \right]+x_2\left[\begin{matrix} 0 \\ 1 \\ -1\end{matrix} \right]+x_3\left[\begin{matrix} 0 \\ 0 \\ 1\end{matrix} \right]=\left[\begin{matrix} x_1 \\ x_2-x_1 \\ x_3-x_2\end{matrix} \right] x1110+x2011+x3001=x1x2x1x3x2
那么用矩阵重写上面的线性组合为:
A x = [ 1 0 0 − 1 1 0 0 − 1 1 ] [ x 1 x 2 x 3 ] = [ x 1 x 2 − x 1 x 3 − x 2 ] = [ b 1 b 2 b 3 ] = b A\boldsymbol{x}=\left[\begin{matrix} 1 & 0 & 0\\ -1 & 1 & 0\\ 0 & -1 & 1\end{matrix} \right]\left[\begin{matrix} x_1 \\ x_2 \\ x_3\end{matrix} \right]=\left[\begin{matrix} x_1 \\ x_2-x_1 \\ x_3-x_2\end{matrix} \right]=\left[\begin{matrix} b_1 \\ b_2 \\ b_3\end{matrix} \right]=\boldsymbol{b} Ax=110011001x1x2x3=x1x2x1x3x2=b1b2b3=b
从以上两式可以看出,矩阵A乘以向量 x \boldsymbol{x} x等同于矩阵 A A A的三个列向量的线性组合 x 1 u + x 2 υ + x 3 ω x_1\boldsymbol{u}+x_2\boldsymbol{\upsilon}+x_3\boldsymbol{\omega} x1u+x2υ+x3ω,即 A x A\boldsymbol{x} Ax的结果就是矩阵A的各列的线性组合

此外,我们也可以使用行的点乘来计算 A x A\boldsymbol{x} Ax
A x = [ 1 0 0 − 1 1 0 0 − 1 1 ] [ x 1 x 2 x 3 ] = [ ( 1 , 0 , 0 ) ⋅ ( x 1 , x 2 , x 3 ) ( − 1 , 1 , 0 ) ⋅ ( x 1 , x 2 , x 3 ) ( 0 , − 1 , 1 ) ⋅ ( x 1 , x 2 , x 3 ) ] = [ x 1 x 2 − x 1 x 3 − x 2 ] = [ b 1 b 2 b 3 ] = b A\boldsymbol{x}=\left[\begin{matrix} 1 & 0 & 0\\ -1 & 1 & 0\\ 0 & -1 & 1\end{matrix} \right]\left[\begin{matrix} x_1 \\ x_2 \\ x_3\end{matrix} \right]=\left[\begin{matrix} (1,0,0) \cdot (x_1,x_2,x_3) \\ (-1,1,0) \cdot (x_1,x_2,x_3) \\ (0,-1,1) \cdot (x_1,x_2,x_3)\end{matrix} \right]=\left[\begin{matrix} x_1 \\ x_2-x_1 \\ x_3-x_2\end{matrix} \right]=\left[\begin{matrix} b_1 \\ b_2 \\ b_3\end{matrix} \right]=\boldsymbol{b} Ax=110011001x1x2x3=(1,0,0)(x1,x2,x3)(1,1,0)(x1,x2,x3)(0,1,1)(x1,x2,x3)=x1x2x1x3x2=b1b2b3=b
线性等式
前面我们是已知 x 1 , x 2 , x 3 x_1,x_2,x_3 x1,x2,x3,来计算等号右侧的 b \boldsymbol{b} b,那么,如果已知等号右侧的 b \boldsymbol{b} b,如何来求 x \boldsymbol{x} x呢?
旧问题: 计算线性组合 x 1 u + x 2 υ + x 3 ω x_1\boldsymbol{u}+x_2\boldsymbol{\upsilon}+x_3\boldsymbol{\omega} x1u+x2υ+x3ω为了得出 b \boldsymbol{b} b
新问题: u , υ , ω \boldsymbol{u},\boldsymbol{\upsilon},\boldsymbol{\omega} u,υ,ω的哪种组合可以生成指定的 b \boldsymbol{b} b

很明显,这是一个互逆的问题。将等式 A x = b A\boldsymbol{x}=\boldsymbol{b} Ax=b改写成我们熟悉的方程式组为:
{ x 1 = b 1 − x 1 + x 2 = b 2 − x 2 + x 3 = b 3 \begin{cases} x_1&&&&&=&b_1&\\ -x_1&+&x_2&&&=&b_2& \\ &-&x_2&+&x_3&=&b_3 \end{cases} x1x1+x2x2+x3===b1b2b3
可轻易对该方程组求解:
{ x 1 = b 1 x 2 = b 1 + b 2 x 3 = b 1 + b 2 + b 3 \begin{cases} x_1=&b_1&\\ x_2=&b_1&+&b_2& \\ x_3=&b_1&+&b_2&+&b_3& \end{cases} x1=x2=x3=b1b1b1++b2b2+b3
写成矩阵形式为: x = A − 1 b \boldsymbol{x}=A^{-1}\boldsymbol{b} x=A1b,我们将 A − 1 A^{-1} A1称作 A A A的逆矩阵,此时的 A A A为可逆矩阵。

多个向量的独立和非独立性
线性代数(一)——向量基础,math,算法,线性代数
如上图所示,左右两个坐标系里向量 u 、 υ \boldsymbol{u}、\boldsymbol{\upsilon} uυ是一样的,这两个向量的线性组合构成一个同样的二维平面,关键问题是第三个向量是否在这个平面里:
独立性: ω \boldsymbol{\omega} ω不在 u 、 υ \boldsymbol{u}、\boldsymbol{\upsilon} uυ构成的平面中,即:
只有当 x 1 = 0 , x 2 = 0 、 x 3 = 0 x_1=0,x_2=0、x_3=0 x1=0,x2=0x3=0时,才满足等式 x 1 u + x 2 υ + x 3 ω = 0 x_1\boldsymbol{u}+x_2\boldsymbol{\upsilon}+x_3\boldsymbol{\omega}=\boldsymbol{0} x1u+x2υ+x3ω=0
如果矩阵 A A A的列是独立的,则 A x = 0 A\boldsymbol{x}=\boldsymbol{0} Ax=0只有一个解, A A A被称作可逆矩阵(非奇异矩阵)。
非独立性: ω ∗ \boldsymbol{\omega^*} ω u 、 υ \boldsymbol{u}、\boldsymbol{\upsilon} uυ构成的平面中,即:
存在多组 x 1 , x 2 , x 3 x_1,x_2,x_3 x1,x2,x3,满足 x 1 u + x 2 υ + x 3 ω ∗ = 0 x_1\boldsymbol{u}+x_2\boldsymbol{\upsilon}+x_3\boldsymbol{\omega^*}=\boldsymbol{0} x1u+x2υ+x3ω=0
如果矩阵 C C C的列是非独立的,则 C x = 0 C\boldsymbol{x}=\boldsymbol{0} Cx=0存在多个解,矩阵 C C C被称作奇异矩阵。

4、参考

[1] Introduction Linear Algebra,Fifth Edition,Giibert Strang.文章来源地址https://www.toymoban.com/news/detail-842086.html

到了这里,关于线性代数(一)——向量基础的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 线性代数基础 | 特征值和特征向量

    一、特征值和特征向量的定义 A. 特征值的定义和性质 特征值(eigenvalue)是线性代数中一个重要的概念,用于描述线性变换对于某个向量的伸缩效应。在本文中,我们将深入讨论特征值的定义和性质。 首先,我们考虑一个线性变换(或者说一个方阵)A。对于一个非零向量v,

    2024年02月16日
    浏览(31)
  • 线性代数基础【5】特征值和特征向量

    一、特征值和特征向量的理论背景 在一个多项式中,未知数的个数为任意多个,且每一项次数都是2的多项式称为二次型,二次型分为两种类型:即非标准二次型及标准二次型 注意: ①二次型X^T AX为非标准二次型的充分必要条件是A^T=A 但A为非对角矩阵;二次型 X^TAX为标准二次型的充

    2024年01月20日
    浏览(39)
  • 信号与系统的一些基本问题之信号分解完备正交基[1]—线性代数向量空间与向量基的基础

      由于一些前后概念是嵌套在一起,密切相关的,但是它们的认知深度的层次又有先后差异,所以为循序渐进,这里在讲解时会存在部分的后面的概念往前提以帮助当前概念的理解以确保大家每一步都能看得懂,并为后续概念作铺垫,文中所有存在这种概念嵌套的情况都有

    2024年04月26日
    浏览(37)
  • 线性代数本质系列(一)向量,线性组合,线性相关,矩阵

    本系列文章将从下面不同角度解析线性代数的本质,本文是本系列第一篇 向量究竟是什么? 向量的线性组合,基与线性相关 矩阵与线性相关 矩阵乘法与线性变换 三维空间中的线性变换 行列式 逆矩阵,列空间,秩与零空间 克莱姆法则 非方阵 点积与对偶性 叉积 以线性变换

    2024年02月04日
    浏览(40)
  • 线性代数(三) 线性方程组&向量空间

    如何利用行列式,矩阵求解线性方程组。 用矩阵方程表示 齐次线性方程组:Ax=0; 非齐次线性方程组:Ax=b. 可以理解 齐次线性方程组 是特殊的 非齐次线性方程组 如何判断线性方程组的解 其中R(A)表示矩阵A的秩 B表示A的增广矩阵 n表示末知数个数 增广矩阵 矩阵的秩 秩r= 未知

    2024年02月13日
    浏览(31)
  • 线性代数之向量组

    文章目录 前言 一、定义与定理 1、定义 1.1、n维向量 1.2、线性组合 1.3、线性表示(出)   1.4、线性相关 1.5、线性无关 2、判别线性相关的七大定理 2.1、定理一: 2.2、定理二: 2.3、定理三: 2.4、定理四: 2.5、定理五: 2.6、定理六: 2.7、定理七: 二、具体型向量关系 1.与

    2024年03月26日
    浏览(38)
  • 线性代数 --- 向量的长度

    从代数的角度定义向量的长度 :       正如我在另外一篇文章中(见本文底部的推荐链接)提到的,两个向量(这是默认是两个列向量)的内积,可以表示为也可以表示为。现在我们考虑一种特殊情形,现在我们有一个向量v=(1,2,3),那么这个向量自己和自己的内积是多少呢

    2024年02月02日
    浏览(29)
  • 机器学习-线性代数-向量、基底及向量空间

    理解 直观理解 行向量:把数字排成一行A = [ 4   5 ] [4~ 5] [ 4   5 ] 列向量:把数字排成一列A =   [ 4 5 ] left [ begin{matrix} 4 \\\\ 5 \\\\ end{matrix} right ]   [ 4 5 ​ ] 几何意义 默认在基底条件下(直角坐标系)中的坐标表示的一个点,也可以理解以原点为起点,到目标终点A的有向线段

    2024年02月06日
    浏览(46)
  • 【线性代数】向量组的线性相关性

    目录 一、图解向量组的线性相关性 1. 向量组线性相关的定义  2.三维空间中向量组线性相关的几何意义 3.向量组线性相关与齐次线性方程组 二、向量组线性相关的基本结论 三、向量组线性相关性总结 做出向量组A与向量组B的图如下: 旋转图形得到:  旋转后发现,向量组

    2024年02月04日
    浏览(33)
  • 线性代数(魏福义)——第一章:向量与线性空间

    坐标系中可使用向量处理几何与运动学的问题,一般使用到二维或者三维有序数组,如(x,y)、(x,y,z),这样的数组称作 向量, 实际问题会用到更多维的向量。 1.1.1向量 以有序数组表示向量。n个数排成的有序数组就是n维向量。 α=(a1,a2,a3...,an)称为 行向量 ;将其

    2024年03月21日
    浏览(37)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包