数据结构奇妙旅程之红黑树

这篇具有很好参考价值的文章主要介绍了数据结构奇妙旅程之红黑树。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

꒰˃͈꒵˂͈꒱ write in front ꒰˃͈꒵˂͈꒱
ʕ̯•͡˔•̯᷅ʔ大家好,我是xiaoxie.希望你看完之后,有不足之处请多多谅解,让我们一起共同进步૮₍❀ᴗ͈ . ᴗ͈ აxiaoxieʕ̯•͡˔•̯᷅ʔ—CSDN博客
本文由xiaoxieʕ̯•͡˔•̯᷅ʔ 原创 CSDN 如需转载还请通知˶⍤⃝˶
个人主页:xiaoxieʕ̯•͡˔•̯᷅ʔ—CSDN博客
系列专栏:xiaoxie的JAVA系列专栏——CSDN博客●'ᴗ'σσணღ*
我的目标:"团团等我💪( ◡̀_◡́ ҂)" 

( ⸝⸝⸝›ᴥ‹⸝⸝⸝ )欢迎各位→点赞👍 + 收藏⭐️ + 留言📝​+关注(互三必回)!

数据结构奇妙旅程之红黑树,数据结构

一.红黑树的概念

红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。 通过对任何 一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出两倍,因而是接近平衡的。

数据结构奇妙旅程之红黑树,数据结构

二.红黑树的性质

1. 每个结点不是红色就是黑色

2. 根节点是黑色的

3. 如果一个节点是红色的,则它的两个孩子结点是黑色的【没有2个连续的红色节点】

4. 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均 包含相同数目的黑色结点

5. 每个叶子结点都是黑色的(此处的叶子结点指的是空结点) 

三.红黑树的插入

红黑树是在二叉搜索树的基础上加上其平衡限制条件,因此红黑树的插入可分为两步:

1. 按照二叉搜索的树规则插入新节点

2. 检测新节点插入后,红黑树的性质是否造到破坏 因为新节点的默认颜色是红色,因此:如果其双亲节点的颜色是黑色,没有违反红黑树任何性质,则不需要 调整;但当新插入节点的双亲节点颜色为红色时,就违反了性质三不能有连在一起的红色节点,此时需要对 红黑树分情况来讨论: 

 这里解释一下为什么新插入的节点是红色的,因为假如插入节点的节点是黑色的,那么为了要满足性质4对于每个结点,从该结点到其所有后代叶结点的简单路径上,均包含相同数目的黑色结点就需要再插入节点为了满足性质4,这样就浪费很多空间,而要是新插入的节点是红色的,我们只需要调整颜色即可.

约定:cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点

1.情况一: cur为红,p为红,g为黑,u存在且为红

数据结构奇妙旅程之红黑树,数据结构

出现这种情况情况,我们先需要把p和u 变成黑色,然后再把g变成红色即可.

这个时候,还需要考虑到

1.g为根节点,只需要在调整结束后,把它变为黑色即可

2.g有双亲节点,且为红色就需要将g当成cur,继续向上调整。(如果双亲节点,为黑色,p和g 变成黑色,然后再把g变成红色后就不违反红黑树的性质了)

数据结构奇妙旅程之红黑树,数据结构

这里再解释一下为什么要把把p和u变成黑色,然后再把g变成红色.

1.首先把p变成红色是因为cur为红色,p也为红色的话就违反了性质3,不能有两个连续的红色节点,所以需要把p变成黑色.

2.为什么要把u变成黑色是因为性质4,每条路径要有相同路径的黑色节点,如果u为红色,p为黑色就不满足该性质,所以要把u变成黑色

3.为什么要把g变成红色,因为假如g还有双亲节点的话,且双亲节点为黑色,那么,由于p和u变成了黑色,为了要满足,性质4,每条路径要有相同路径的黑色节点,就需要增加黑色节点的个数,所以需要把g变成红色,p和u变成黑色,就满足了性质4

 2.情况二:cur为红,p为红, g为黑,u不存在/u为黑

数据结构奇妙旅程之红黑树,数据结构

就是因为在出现情况一之后,调整,p,u,g的颜色导致了情况二的发生

我们该如何调整调整使它满足红黑树的五条性质呢,我们可以发现,仅仅简单的改变颜色并不可以满足红黑树的五条性质,这个时候我们可以发现,这个情况是不是很像AVL树树中的左树高于,右数的情况,这个时候对于AVL树来说,可以使用右旋来解决这个问题,我们是不是也可以通过旋转操作可以调整节点的位置,然后只要在稍微改变个边节点的颜色即使它满足红黑树的性质.

数据结构奇妙旅程之红黑树,数据结构

右旋后再根据红黑树的性质,把g变为红色,p变为黑色,即可 

数据结构奇妙旅程之红黑树,数据结构

3.情况三: cur为红,p为红,g为黑,u不存在/u为黑 

数据结构奇妙旅程之红黑树,数据结构

在调整的过程中,cur变成了红色,导致情况三的发生, 同时,我们发现和AVL树类似,仅仅通过左旋或者右旋并不可以可以调整节点的位置,因为是较高左树的右子树较高,我们先进行,左旋.

数据结构奇妙旅程之红黑树,数据结构

通过左旋我们发现,可以把问题转换为情况二,即可解决该问题.

4.说明

从上面的这些情况我们可以发现,在上面这些图中,p都为g的左孩子的情况,p为g右孩子的情况我并没有说明,在这里博主统一说明一下,因为p为g右孩子的情况就是p都为g的左孩子的情况的相当于镜像处理即

在情况二中

p为g的左孩子,cur为p的左孩子,则进行右单旋转;相反, p为g的右孩子,cur为p的右孩子,则进行左单旋转

在情况三中

p为g的左孩子,cur为p的右孩子,则针对p做左单旋转;相反, p为g的右孩子,cur为p的左孩子,则针对p做右单旋转

所以博主就不展示调整过程了,直接上代码

5.代码实现

public class RBTree {
    public static enum COLOR {RED, BLACK} // 定义颜色枚举,表示节点的红黑状态

    // 红黑树节点类
    public static class RbTreeNode {
        public RbTreeNode left;  // 左子节点
        public RbTreeNode right; // 右子节点
        public RbTreeNode parent; // 父节点
        public int val;          // 节点值
        public COLOR color;      // 节点颜色,默认为红色

        // 构造函数,创建一个带有指定值的新节点,并将其颜色设置为红色
        public RbTreeNode(int val) {
            this.val = val;
            this.color = COLOR.RED;
        }
    }

    // 树的根节点
    public RbTreeNode root;

    // 插入新节点方法
    public boolean insert(int val) {
        RbTreeNode node = new RbTreeNode(val);
        if(root == null) {
            root = node;
            return true;
        }

        // 寻找插入位置
        RbTreeNode cur = root;
        RbTreeNode parent = null;
        while (cur != null) {
            if(node.val < cur.val) {
                parent = cur;
                cur = cur.left;
            } else if(node.val > cur.val) {
                parent = cur;
                cur = cur.right;
            } else {
                System.out.println("这个节点" + val +"已经存在了");
                return false;
            }
        }

        // 插入新节点并更新父节点指向
        if(parent.val < node.val) {
            parent.right = node;
        } else {
            parent.left = node;
        }
        node.parent = parent;

        // 调整红黑树性质
        cur = node;
        while (parent != null && parent.color == COLOR.RED) {
            RbTreeNode grandfather = parent.parent;
                if(parent == grandfather.left) {//p节点为g节点的左孩子
                RbTreeNode uncle = grandfather.right;
                //uncle不为空,且uncle的颜色为红色
            // 获取叔叔节点
          
            // 情况一:叔叔节点存在且为红色
            if(uncle != null && uncle.color == COLOR.RED) {
                grandfather.color = COLOR.RED;
                parent.color = COLOR.BLACK;
                uncle.color = COLOR.BLACK;
                cur = grandfather;
                parent = cur.parent;
            } else {
                // 情况三:叔叔节点不存在或为黑色
                if(cur == parent.right) { // 需要左旋
                    rotateLeft(parent);
                    RbTreeNode tmp = parent;
                    parent = cur;
                    cur = tmp;
                }
                //情况二:叔叔节点不存在或为黑色
                rotateRight(grandfather); // 右旋以修复红黑树性质
                grandfather.color = COLOR.RED;
                parent.color = COLOR.BLACK;
            }else {///p节点为g节点的右孩子//镜像处理和/p节点为g节点的左孩子类似
                 RbTreeNode uncle = grandfather.left;
                if(uncle != null && uncle.color == COLOR.RED) {
                    grandfather.color = COLOR.RED;
                    parent.color = COLOR.BLACK;
                    uncle.color = COLOR.BLACK;
                    cur = grandfather;
                    parent = cur.parent;
                }else {
                    //情况三
                    if(cur == parent.left) {
                        rotateRight(parent);
                        RbTreeNode tmp = parent;
                        parent = cur;
                        cur = tmp;
                    }
                    //情况二
                    //叔叔节点不存在 || 叔叔节点存在,但是颜色是黑色
                    rotateLeft(grandfather);
                    grandfather.color = COLOR.RED;
                    parent.color = COLOR.BLACK;
                }
        }

        return true;
    }

    /**
     * 右旋操作
     * @param parent 需要右旋的节点(旋转中心)
     */
    private void rotateRight(RbTreeNode parent) {
        RbTreeNode subL = parent.left;
        RbTreeNode subLR = subL.right;

        subL.right = parent;
        parent.left = subLR;

        if(subLR != null) {
            subLR.parent = parent;
        }

        RbTreeNode Pparent = parent.parent;
        parent.parent = subL;

        if(parent == root) {
            root = subL;
            root.parent = null;
            root.color = COLOR.BLACK;//如果是根节点就要为黑色
        } else {
            if(Pparent.left == parent) {
                Pparent.left = subL;
            } else {
                Pparent.right = subL;
            }
            subL.parent = Pparent;
        }
    }

    /**
     * 左旋操作
     * @param parent 需要左旋的节点(旋转中心)
     */
    private void rotateLeft(RbTreeNode parent) {
        RbTreeNode subR = parent.right;
        RbTreeNode subRL = subR.left;

        subR.left = parent;
        parent.right = subRL;

        if(subRL != null) {
            subRL.parent = parent;
        }

        // 记录parent节点的父亲节点
        RbTreeNode Pparent = parent.parent;
        parent.parent = subR;

        if(parent == root) {
            root = subR;
            subR.parent = null;
            root.color = COLOR.BLACK;//如果是根节点就要为黑色
        } else {
            if(Pparent.left == parent) {
                Pparent.left = subR;
            } else {
                Pparent.right = subR;
            }
            subR.parent = Pparent;
        }
    }
}

好了,这三种情况都讨论完了,我想强调的是:注意哪些分方向的情况,每个分方向的情形就两种情况

四.红黑树验证

这里博主在提供一下红黑树验证的方法,检测一下你自己手撕红黑树代码有没有错误

1. 检测其是否满足二叉搜索树(中序遍历是否为有序序列)

public void inorder(RBTreeNode root) {
if(root == null) {
return;
}
inorder(root.left);
System.out.print(root.val+" ");
inorder(root.right);
}

2.检测其是否满足红黑树的性质

public boolean isValidRBTree()
{
// 空树也是红黑树
if(null == root)
return true;
if(root.color != COLOR.BLACK) {
System.out.println("违反了性质2:根节点不是黑色");
return false;
}
// 获取单条路径中节点的个数
int blackCount = 0;
RBTreeNode cur = root;
while(null != cur){
if(cur.color == COLOR.BLACK)
blackCount++;
cur = cur.left;
}
// 具体的检验方式
return _isValidRBtree(root, 0, blackCount);
}
private boolean _isValidRBtree(RBTreeNode root, int pathCount, int blackCount){
if(null == root)
return true;
// 遇到一个黑色节点,统计当前路径中黑色节点个数
if(root.color == COLOR.BLACK)
pathCount++;
// 验证性质4
RBTreeNode parent = root.parent;
if(parent != null && parent.color == COLOR.RED && root.color == COLOR.RED){
System.out.println("违反了性质4:有连在一起的红色节点");
return true;
}
// 验证性质5
// 如果是叶子节点,则一条路径已经走到底,检验该条路径中黑色节点总个数是否与先前统计的结果相同
if(root.left == null && root.right == null){
if(pathCount != blackCount){
System.out.println("违反了性质5:路径中黑色节点格式不一致");
return false;
}
}
// 以递归的方式检测root的左右子树
return _isValidRBtree(root.left, pathCount, blackCount) &&
_isValidRBtree(root.right, pathCount, blackCount);
}

5. AVL树和红黑树的比较

红黑树和AVL树都是高效的平衡二叉树,增删改查的时间复杂度都是O(logN ),红黑树不追求绝对平衡,其只需保 证最长路径不超过最短路径的2倍,相对而言,降低了插入和旋转的次数,所以在经常进行增删的结构中性能比 AVL树更优,而且红黑树实现比较简单,所以实际运用中红黑树更多。文章来源地址https://www.toymoban.com/news/detail-842174.html

到了这里,关于数据结构奇妙旅程之红黑树的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数据结构奇妙旅程之二叉树初阶

    ꒰˃͈꒵˂͈꒱ write in front ꒰˃͈꒵˂͈꒱ ʕ̯•͡˔•̯᷅ʔ大家好,我是xiaoxie.希望你看完之后,有不足之处请多多谅解,让我们一起共同进步૮₍❀ᴗ͈ . ᴗ͈ აxiaoxieʕ̯•͡˔•̯᷅ʔ—CSDN博客 本文由xiaoxieʕ̯•͡˔•̯᷅ʔ 原创 CSDN 如需转载还请通知˶⍤⃝˶ 个人主页:xiaoxieʕ̯

    2024年01月19日
    浏览(63)
  • 数据结构奇妙旅程之顺序表和链表

    ꒰˃͈꒵˂͈꒱ write in front ꒰˃͈꒵˂͈꒱ ʕ̯•͡˔•̯᷅ʔ大家好,我是xiaoxie.希望你看完之后,有不足之处请多多谅解,让我们一起共同进步૮₍❀ᴗ͈ . ᴗ͈ აxiaoxieʕ̯•͡˔•̯᷅ʔ—CSDN博客 本文由xiaoxieʕ̯•͡˔•̯᷅ʔ 原创 CSDN 如需转载还请通知˶⍤⃝˶ 个人主页:xiaoxieʕ̯

    2024年02月05日
    浏览(62)
  • 数据结构奇妙旅程之二叉平衡树进阶---AVL树

    ꒰˃͈꒵˂͈꒱ write in front ꒰˃͈꒵˂͈꒱ ʕ̯•͡˔•̯᷅ʔ大家好,我是xiaoxie.希望你看完之后,有不足之处请多多谅解,让我们一起共同进步૮₍❀ᴗ͈ . ᴗ͈ აxiaoxieʕ̯•͡˔•̯᷅ʔ—CSDN博客 本文由xiaoxieʕ̯•͡˔•̯᷅ʔ 原创 CSDN 如需转载还请通知˶⍤⃝˶ 个人主页:xiaoxieʕ̯

    2024年03月13日
    浏览(82)
  • 【高阶数据结构】红黑树 {概念及性质;红黑树的结构;红黑树的实现;红黑树插入操作详细解释;红黑树的验证}

    红黑树(Red Black Tree) 是一种自平衡二叉查找树,在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩倍,因而是接近平衡的。 AVL树 VS 红黑树 红黑树是

    2024年02月09日
    浏览(47)
  • 红黑树数据结构

    现在JAVASE中HashMap中底层源码是由数组+链表+红黑树进行设计的,然后很多地方也是用到红黑树,这里单独对红黑树数据结构进行简单的介绍。 目录 红黑树概念 红黑树的性质 自平衡规则 代码   红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可

    2024年02月01日
    浏览(39)
  • 数据结构——红黑树

    目录 概念 性质 结点的定义  插入 调整 当p是g的左孩子时 当p为g的右孩子时 插入完整代码 红黑树的检测 红黑树完整代码(包括测试数据)   红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是RED或BLACK。 通过对任何一条从根到叶子的路径

    2023年04月09日
    浏览(43)
  • 【数据结构】红黑树

    🐱作者:一只大喵咪1201 🐱专栏:《数据结构与算法》 🔥格言: 你只管努力,剩下的交给时间! 在学习AVL树的时候,我们知道,当修改AVL树的结构(插入,删除)时,会通过旋转来保证平衡因子不超过1,所以频繁的修改结构会导致效率低下,今天我们学习的红黑树就完美解

    2023年04月17日
    浏览(47)
  • 【数据结构-树】红黑树

    💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kuan 的首页,持续学习,不断总结,共同进步,活到老学到老 导航 檀越剑指大厂系列:全面总

    2024年02月07日
    浏览(43)
  • 数据结构 | 红黑树

    节点的左边比节点的值小,右边比节点的值大。 节点要么是 红色 ,要么是 黑色 根节点 是黑色 叶子节点都是黑色的空节点 红黑树中红色节点的子节点都是黑色 从任一节点到叶子节点的所有路径都包含相同数目的黑色节点 在添加或者删除节点的时候,如果不满足这些性质会

    2024年01月21日
    浏览(42)
  • [数据结构]-红黑树

    前言 作者 : 小蜗牛向前冲 名言: 我可以接受失败,但我不能接受放弃   如果觉的博主的文章还不错的话,还请 点赞,收藏,关注👀支持博主。如果发现有问题的地方欢迎❀大家在评论区指正 目录 一、红黑树的基本知识  1、红黑树的概念 2、性质  二、红黑树的模拟实

    2024年02月04日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包