银行数据仓库体系实践(18)--数据应用之信用风险建模

这篇具有很好参考价值的文章主要介绍了银行数据仓库体系实践(18)--数据应用之信用风险建模。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

信用风险

        银行的经营风险的机构,那在第15节也提到了巴塞尔新资本协议对于银行风险的计量和监管要求,其中信用风险是银行经营的主要风险之一,它的管理好坏直接影响到银行的经营利润和稳定经营。信用风险是指交易对手未能履行约定契约中的义务而给银行造成经济损失的风险。典型的表现形式包括借款人发生违约或信用等级下降。借款人因各种原因未能及时、足额偿还债务/银行贷款、未能履行合同义务而发生违约时,债权人或银行必将因为未能得到预期的收益而承担财务上的损失。

        那如何来表示某个交易对手的信用情况呢,一般使用信用等级或信用评分来来表示,等级越低或评分越低,发生违约的概率会增加。这个信用评分主要应用在客户的贷前和贷后管理中,贷前是指客户贷款申请阶段,银行受理客户贷款申请时会根据客户提交的信息、人行征信、其它数据源按一定的规则计算出一个违约概率和风险评分或信用等级。再根据这个评分或评级来确定客户的授信额度和利率。计算出的评分或评级越高,违约概率越低,比如在进行个人贷前评分时主要关注以下5方面:

        (1)People:贷款人状况,包括历史还款表现、当前负债情况、资金饥渴度等;

        (2)Payment:还款来源,如基本收入、资产水平、月收支负债比、无担保总负债等;       

        (3)Purpose:资金用途,如消费、买房,需要规避贷款资金用于投资或投机性质较高领域,如股票和数字货币;

        (4)Protection:债权确保,主要是看是否有抵押物或担保,需要看抵押物用途、质量、价格等关键要素;

        (5)Perspective:借款户展望,从地域、行业、人生阶段等考察稳定性及潜力;

        贷后是指客户借款后银行持续跟进客户的信用情况,如果发现信用评分降低或者某些指标达到风险预警指标的阈值,说明风险升高,则会进行冻结额度甚至提前进行贷款收回。特别是对于逾期客户。

风险建模步骤

       在进行信用评估时如何选择客户属性、如何确定评分或评级规则呢?这就需要进行风险建模,通过分析历史数据来确定哪些特征或指标对客户的违约相关性大,可以了解客户的还款能力以及还款意愿。并通过一定方法来建立评分和评级的规则。那风险建模主要分为以下步骤:

银行数据仓库体系实践(18)--数据应用之信用风险建模,银行数据仓库,数据仓库

        (1)业务理解:主要评估当前现状、确定业务目标,选择建模方法,比如需要进行XX贷款产品的贷前评分模型并确定准入规则,建模方式比如为评分卡,评分应用为基于评分确定贷款准入规则以及额度和利率规则,同时需要确定分析数据的好客户和坏客户标准,如逾期90天以上为坏客户;

        (2)数据理解:首先需要准备建模的样本数据,如抽取近2年的获得类似产品的客户相关信息以及根据好客户和坏客户标准确定的结果。并针对业务数据进行业务含义理解、对数据进行收集、探索,了解每个变量的数据质量、缺失情况,数据分布等。比如对于客户在人行的征信数据、客户在银行的存款、理财等信息、以及客户申请填写的家庭、房产信息、外部获得的客户教育、司法等相关信息进行业务理解和数据分布、质量的探索,对缺失值比例过大的变量或准确性不高的变量进行剔除,同时也要确定对于样本数据中哪些数据进行建模,哪些数据进行验证。

        (3)数据准备:主要对数据进行预处理和指标加工,指标加工指基于基础数据进行指标加工,如最近1个月的征信查询次数,最近1年的逾期次数等,数据预处理主要工作包括对每一个变量进行数据清洗、缺失值处理、异常值处理、数据标准化等,主要目的是将获取的原始数据转变成可用于建模的结构化数据。

        比如对于连续变量,就是要寻找合适的切割点把变量分为几个区间段以使其具有最强的预测能力,也称为“分箱”。例如客户年龄就是连续变量,在这一步就是要研究分成几组、每组切割点在哪里预测能力是最强的。分箱的方法有等宽、等频、聚类(k-means)、卡方分箱法、单变量决策树算法(ID3、C4.5、CART)、IV最大化分箱法、best-ks分箱法等。如果是离散变量,每个变量值都有一定的预测能力,但是考虑到可能几个变量值有相近的预测能力,因此也需要进行分组。

        通过对变量的分割、分组和合并转换,分析每个变量对于结果的相关性,剔除掉预测能力较弱的变量,筛选出符合实际业务需求、具有较强预测能力的变量。检测变量预测能力的方法有:WOE(weight of Evidence) 、IV(informationvalue)等。

        (4)分析建模:即对于筛选出来的变量以及完成好坏定义的样本结果。放入模型进行拟合。如评分卡一般采用常见的逻辑回归的模型,PYTHON、SAS、R都有相关的函数实现模型拟合。以下是生成的评分卡的例子。

银行数据仓库体系实践(18)--数据应用之信用风险建模,银行数据仓库,数据仓库

银行数据仓库体系实践(18)--数据应用之信用风险建模,银行数据仓库,数据仓库

        (5)评估及报告:即通过验证样本对模型的预测进行校验。评估模型的准确性和稳健性,并得出分析报告。常用的方法有ROC曲线、lift提升指数、KS(Kolmogorov-Smirnov)曲线、GINI系数等。

银行数据仓库体系实践(18)--数据应用之信用风险建模,银行数据仓库,数据仓库

        (6)应用:对模型进行实际部署和应用,如基于评分进行客户准入和产生额度,并在贷款系统进行模型部署,自动对申请客户进行评分。

        (7)监测:建立多种报表对模型的有效性、稳定性进行监测,如稳定性监控报表来比较新申请客户与开发样本客户的分值分布,不良贷款分析报表来评估不同分数段的不良贷款,并且与开发时的预测进行比较,监控客户信贷质量。随着时间的推移和环境变化,评分模型的预测力会减弱,所以需要持续监控并进行适当调整或重建。

        在信用风险建模中,目前评分卡建模还是主要的方式,除了申请评分(A卡(Application score card))还有B卡(Behavior score card)行为评分卡、C卡(Collection score card)催收评分卡。B卡主要进行客户贷后管理,如何进行风险预警,C卡进行催收管理,确定如何催收以及催收方式和时间点。信用风险模型中还有一个是反欺诈模型,它主要是识别假冒身份、虚假信息、批量薅羊毛等欺诈行为。随着机器学习和大数据的发展,其它的一些建模方式如决策树、深度神经网络也越来越多的应用到了风险建模中。

        信用风险模型是数据仓库支持的重要数据应用之一,在风险建模分析阶段,数据仓库是建模样本数据以及衍生指标加工的主要提供者,业务人员一般在自助分析平台进行数据分析和建模,模型建立完成并部署后,会基于数据仓库数据进行模型效果的监控。在贷后管理中,风险集市也会进行贷后指标的加工。另外风险模型以及预警中会经常使用到外部数据,这部分数据也是通过数据仓库进行对接、加工和存储。

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
                        
原文链接:https://blog.csdn.net/acumen_leo/article/details/99836511文章来源地址https://www.toymoban.com/news/detail-842223.html

到了这里,关于银行数据仓库体系实践(18)--数据应用之信用风险建模的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 银行网络安全实战对抗体系建设实践

    党的十八大以来,将网络安全提升到前所未有的新高度,银行牢牢把握国家网络安全战略目标,已加强自身建设,建立了较为完善的安全防护体系。同时随着国际网络安全攻防对抗升级,银行转变思路、主动作为,从被动防守向主动防御、动态防御转型,聚焦传统攻防演练的

    2024年01月21日
    浏览(58)
  • 数据挖掘项目:金融银行风控信用评分卡模型(上篇)

    数据来自Kaggle的Give Me Some Credit,有15万条的样本数据,网上的分析说明有很多,本人结合其他大佬的方法,对数据进行细致的分析,主要分析在EDA环节,之后尝试使用toad这个评分卡的库,以及使用quct结合卡方检验分箱的方法,使用AUC和KS,结合交叉验证对比分析哪个效果更好

    2024年02月13日
    浏览(59)
  • 大数据信用风险检测,多久查一次比较好?

    自从大数据技术的出现,就被广泛的运用到金融风控行业,逐渐成为不少银行和机构进行贷前风险排查的重要工具,大数据信用的重要性也日益的显现出来,那大数据信用风险检测,多久查一次比较好呢?本文为你详细讲讲。 大数据信用风险自测可以根据以下场景查询: 一、

    2024年02月19日
    浏览(98)
  • 案例分享 | 从北京农商银行实践经验看智能运维体系如何落地

    前言: 随着企业的落地实践越来越多,智能运维也从开始时的“点状”场景建设,升级为“体系求变”,即从建设初始就思考总体的AIOps建设体系,选择适合自己的点进入,在数年内建设完整的智能运维体系。 我们非常荣幸能邀请到两位金融行业的客户莅临现场,为我们分享

    2024年02月02日
    浏览(57)
  • TiDB x 汉口银行丨分布式数据库应用实践

    汉口银行是一家城市商业银行,近年来专注科技金融、民生金融等领域。在数据库国产化改造中,汉口银行引入了 TiDB 数据库,并将其应用在重要业务系统:头寸系统中,实现了一栈式的数据服务,同时满足了高并发、低延时、数据一致性和高可用需求,解决了传统数据库的

    2024年02月06日
    浏览(41)
  • 信用评级接口:帮助您判断合作风险和信用等级

      在商业合作中,了解对方企业的信用状况是非常重要的。借助现代科技的力量,我们可以通过信用评级接口来获取企业的信用评级结果和信用分数,从而对合作风险进行评估和判断。本篇博文将为大家介绍如何使用信用评级接口,并对其代码进行详细说明。 首先,请让我简

    2024年03月09日
    浏览(48)
  • 【银行测试】银行项目,信用卡业务测试+常问面试(三)

    银行测试-信用卡业务 1、信用卡额度如何测试? 正常测试场景: 在ATM取款,取款的金额≤信用卡额度/2(例如:信用卡额度为:2W,在ATM可成功取款10000); 在POS机上刷卡消费金额,单笔金额≤信用卡额度,交易成功; 消费的金额,超过信用卡正常额度(1-10%)交易成功(例

    2024年01月16日
    浏览(59)
  • 元数据管理在数据仓库中的实践应用

    元数据(Metadata),又称中介数据、中继数据,为描述数据的数据(data about data)。 抽象的描述:一组用于描述数据的数据组,该数据组的一切信息都描述了该数据的某方面特征,则该数据组即可被称为元数据。 举几个简单例子: 如果一本书是一个“数据\\\",那么它的书名、封

    2024年01月24日
    浏览(30)
  • 银行机构数据治理案例解读,构建全行数据资产体系

    近年来,随着信息化、数字化、智能化的快速发展,数据从资源逐渐转变为资产。金融行业具有海量数据资源和丰富应用场景优势,在企业经营管理、产品研发、技术创新等关键环节中发挥着重要作用。数据治理作为释放数据价值的基础,在推动银行数字化转型的过程中扮演

    2024年02月16日
    浏览(39)
  • Hive在阿里巴巴数据仓库中的实践与应用

    作者:禅与计算机程序设计艺术 Apache Hive 是 Hadoop 的一个子项目,它是一个基于 HQL(Hadoop Query Language)语言的查询引擎,可以将结构化的数据文件存储在HDFS上并提供分布式计算功能。Hive 有着良好的扩展性、稳定性、高效执行速度、完备的SQL支持等优点。Hive 适用于互联网行

    2024年02月11日
    浏览(36)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包