基于多种优化算法的物联网无人机基站研究【布谷鸟搜索CS、大象群体优化EHO、灰狼优化GWO、帝王蝴蝶优化MBO、鲨鱼群算法SSA和粒子群优化PSO】(Matlab代码实现)

这篇具有很好参考价值的文章主要介绍了基于多种优化算法的物联网无人机基站研究【布谷鸟搜索CS、大象群体优化EHO、灰狼优化GWO、帝王蝴蝶优化MBO、鲨鱼群算法SSA和粒子群优化PSO】(Matlab代码实现)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据、文章下载


💥1 概述

摘要:
下一代物联网(NG-IoT)应用的出现为第六代(6G)移动网络引入了诸多挑战,如大规模连接、增加的网络容量和极低的延迟。为了应对上述挑战,超密集网络已被广泛认为是一种可能的解决方案。然而,基站(BSs)的密集部署并不总是可行或经济高效的。无人机基站(DBSs)可以促进网络扩展并有效应对NG-IoT的要求。此外,由于其灵活性,它们可以在紧急情况下提供按需连接或应对网络流量的临时增加。然而,由于有限的能量储备和空地链路中信号质量降低,DBS的最佳位置的确定并非易事。为此,群体智能方法可能是在三维(3D)空间中确定DBS的最佳位置的吸引人解决方案。在这项工作中,我们探讨了著名的群体智能方法,包括布谷鸟搜索(CS)、大象群体优化(EHO)、灰狼优化(GWO)、帝王蝴蝶优化(MBO)、鲨鱼群算法(SSA)和粒子群优化(PSO),并研究它们在解决上述问题中的性能和效率。具体而言,我们研究了在不同群体智能方法存在的情况下的三个场景的性能。此外,我们进行了非参数统计测试,即弗里德曼和威尔科克森测试,以比较不同的方法。详细文章见第4部分。

📚2 运行结果

基于多种优化算法的物联网无人机基站研究【布谷鸟搜索CS、大象群体优化EHO、灰狼优化GWO、帝王蝴蝶优化MBO、鲨鱼群算法SSA和粒子群优化PSO】(Matlab代码实现),算法,物联网,matlab

基于多种优化算法的物联网无人机基站研究【布谷鸟搜索CS、大象群体优化EHO、灰狼优化GWO、帝王蝴蝶优化MBO、鲨鱼群算法SSA和粒子群优化PSO】(Matlab代码实现),算法,物联网,matlab

基于多种优化算法的物联网无人机基站研究【布谷鸟搜索CS、大象群体优化EHO、灰狼优化GWO、帝王蝴蝶优化MBO、鲨鱼群算法SSA和粒子群优化PSO】(Matlab代码实现),算法,物联网,matlab

基于多种优化算法的物联网无人机基站研究【布谷鸟搜索CS、大象群体优化EHO、灰狼优化GWO、帝王蝴蝶优化MBO、鲨鱼群算法SSA和粒子群优化PSO】(Matlab代码实现),算法,物联网,matlab

基于多种优化算法的物联网无人机基站研究【布谷鸟搜索CS、大象群体优化EHO、灰狼优化GWO、帝王蝴蝶优化MBO、鲨鱼群算法SSA和粒子群优化PSO】(Matlab代码实现),算法,物联网,matlab

基于多种优化算法的物联网无人机基站研究【布谷鸟搜索CS、大象群体优化EHO、灰狼优化GWO、帝王蝴蝶优化MBO、鲨鱼群算法SSA和粒子群优化PSO】(Matlab代码实现),算法,物联网,matlab

基于多种优化算法的物联网无人机基站研究【布谷鸟搜索CS、大象群体优化EHO、灰狼优化GWO、帝王蝴蝶优化MBO、鲨鱼群算法SSA和粒子群优化PSO】(Matlab代码实现),算法,物联网,matlab

基于多种优化算法的物联网无人机基站研究【布谷鸟搜索CS、大象群体优化EHO、灰狼优化GWO、帝王蝴蝶优化MBO、鲨鱼群算法SSA和粒子群优化PSO】(Matlab代码实现),算法,物联网,matlab

基于多种优化算法的物联网无人机基站研究【布谷鸟搜索CS、大象群体优化EHO、灰狼优化GWO、帝王蝴蝶优化MBO、鲨鱼群算法SSA和粒子群优化PSO】(Matlab代码实现),算法,物联网,matlab

基于多种优化算法的物联网无人机基站研究【布谷鸟搜索CS、大象群体优化EHO、灰狼优化GWO、帝王蝴蝶优化MBO、鲨鱼群算法SSA和粒子群优化PSO】(Matlab代码实现),算法,物联网,matlab

部分代码:

%Scenarios 2 and 3
x=[1:10]; %x-axis vector

urban_pathloss(1,:)=CS_avg_pathloss(1,:);
urban_pathloss(2,:)=EHO_avg_pathloss(1,:);
urban_pathloss(3,:)=GWO_avg_pathloss(1,:);
urban_pathloss(4,:)=MBO_avg_pathloss(1,:);
urban_pathloss(5,:)=SSA_avg_pathloss(1,:);
urban_pathloss(6,:)=PSO_avg_pathloss(1,:);
figure
plot(x,urban_pathloss)
legend("CS", "EHO", "GWO", "MBO", "SSA", "PSO")
xlabel("Number of DBSs")
ylabel("Average Pathloss")
title("Average pathloss as a function of the number of DBSs in urban environment")

suburban_pathloss(1,:)=CS_avg_pathloss(2,:);
suburban_pathloss(2,:)=EHO_avg_pathloss(2,:);
suburban_pathloss(3,:)=GWO_avg_pathloss(2,:);
suburban_pathloss(4,:)=MBO_avg_pathloss(2,:);
suburban_pathloss(5,:)=SSA_avg_pathloss(2,:);
suburban_pathloss(6,:)=PSO_avg_pathloss(2,:);
figure
plot(x,suburban_pathloss)
legend("CS", "EHO", "GWO", "MBO", "SSA", "PSO")
xlabel("Number of DBSs")
ylabel("Average Pathloss")
title("Average pathloss as a function of the number of DBSs in suburban environment")

dense_pathloss(1,:)=CS_avg_pathloss(3,:);
dense_pathloss(2,:)=EHO_avg_pathloss(3,:);
dense_pathloss(3,:)=GWO_avg_pathloss(3,:);
dense_pathloss(4,:)=MBO_avg_pathloss(3,:);
dense_pathloss(5,:)=SSA_avg_pathloss(3,:);
dense_pathloss(6,:)=PSO_avg_pathloss(3,:);
figure
plot(x,dense_pathloss)
legend("CS", "EHO", "GWO", "MBO", "SSA", "PSO")
xlabel("Number of DBSs")
ylabel("Average Pathloss")
title("Average pathloss as a function of the number of DBSs in dense-urban environment")

highrise_pathloss(1,:)=CS_avg_pathloss(4,:);
highrise_pathloss(2,:)=EHO_avg_pathloss(4,:);
highrise_pathloss(3,:)=GWO_avg_pathloss(4,:);
highrise_pathloss(4,:)=MBO_avg_pathloss(4,:);
highrise_pathloss(5,:)=SSA_avg_pathloss(4,:);
highrise_pathloss(6,:)=PSO_avg_pathloss(4,:);
figure
plot(x,highrise_pathloss)
legend("CS", "EHO", "GWO", "MBO", "SSA", "PSO")
xlabel("Number of DBSs")
ylabel("Average Pathloss")
title("Average pathloss as a function of the number of DBSs in high-rise urban environment")

% Coverage probability
%Urban environment - 1 , 90dB - 1
urban_coverage(1,:)=CS_avg_coverage(1,1,:);
urban_coverage(2,:)=EHO_avg_coverage(1,1,:);
urban_coverage(3,:)=GWO_avg_coverage(1,1,:);
urban_coverage(4,:)=MBO_avg_coverage(1,1,:);
urban_coverage(5,:)=SSA_avg_coverage(1,1,:);
urban_coverage(6,:)=PSO_avg_coverage(1,1,:);
figure
plot(x,urban_coverage)
legend("CS", "EHO", "GWO", "MBO", "SSA", "PSO")
xlabel("Number of DBSs")
ylabel("Coverage Probability")
title("Coverage probability as a function of the number of DBSs in urban environment (T=90dB)")

%Urban environment - 1 , 100dB - 2
urban_coverage(1,:)=CS_avg_coverage(2,1,:);
urban_coverage(2,:)=EHO_avg_coverage(2,1,:);
urban_coverage(3,:)=GWO_avg_coverage(2,1,:);
urban_coverage(4,:)=MBO_avg_coverage(2,1,:);
urban_coverage(5,:)=SSA_avg_coverage(2,1,:);
urban_coverage(6,:)=PSO_avg_coverage(2,1,:);
figure
plot(x,urban_coverage)
legend("CS", "EHO", "GWO", "MBO", "SSA", "PSO")
xlabel("Number of DBSs")
ylabel("Coverage Probability")
title("Coverage probability as a function of the number of DBSs in urban environment (T=100dB)")

%Urban environment - 1 , 110dB - 3
urban_coverage(1,:)=CS_avg_coverage(3,1,:);
urban_coverage(2,:)=EHO_avg_coverage(3,1,:);
urban_coverage(3,:)=GWO_avg_coverage(3,1,:);
urban_coverage(4,:)=MBO_avg_coverage(3,1,:);
urban_coverage(5,:)=SSA_avg_coverage(3,1,:);
urban_coverage(6,:)=PSO_avg_coverage(3,1,:);
figure
plot(x,urban_coverage)
legend("CS", "EHO", "GWO", "MBO", "SSA", "PSO")
xlabel("Number of DBSs")
ylabel("Coverage Probability")
title("Coverage probability as a function of the number of DBSs in urban environment (T=110dB)")

%Urban environment - 1 , 120dB - 4
urban_coverage(1,:)=CS_avg_coverage(4,1,:);
urban_coverage(2,:)=EHO_avg_coverage(4,1,:);
urban_coverage(3,:)=GWO_avg_coverage(4,1,:);
urban_coverage(4,:)=MBO_avg_coverage(4,1,:);
urban_coverage(5,:)=SSA_avg_coverage(4,1,:);
urban_coverage(6,:)=PSO_avg_coverage(4,1,:);
figure
plot(x,urban_coverage)
legend("CS", "EHO", "GWO", "MBO", "SSA", "PSO")
xlabel("Number of DBSs")
ylabel("Coverage Probability")
title("Coverage probability as a function of the number of DBSs in urban environment (T=120dB)")


%Suburban environment - 1 , 90dB - 1
suburban_coverage(1,:)=CS_avg_coverage(1,2,:);
suburban_coverage(2,:)=EHO_avg_coverage(1,2,:);
suburban_coverage(3,:)=GWO_avg_coverage(1,2,:);
suburban_coverage(4,:)=MBO_avg_coverage(1,2,:);
suburban_coverage(5,:)=SSA_avg_coverage(1,2,:);
suburban_coverage(6,:)=PSO_avg_coverage(1,2,:);
figure
plot(x,suburban_coverage)
legend("CS", "EHO", "GWO", "MBO", "SSA", "PSO")
xlabel("Number of DBSs")
ylabel("Coverage Probability")
title("Coverage probability as a function of the number of DBSs in suburban environment (T=90dB)")

%Suburban environment - 1 , 100dB - 2
suburban_coverage(1,:)=CS_avg_coverage(2,2,:);
suburban_coverage(2,:)=EHO_avg_coverage(2,2,:);
suburban_coverage(3,:)=GWO_avg_coverage(2,2,:);
suburban_coverage(4,:)=MBO_avg_coverage(2,2,:);
suburban_coverage(5,:)=SSA_avg_coverage(2,2,:);
suburban_coverage(6,:)=PSO_avg_coverage(2,2,:);
figure
plot(x,suburban_coverage)
legend("CS", "EHO", "GWO", "MBO", "SSA", "PSO")
xlabel("Number of DBSs")
ylabel("Coverage Probability")
title("Coverage probability as a function of the number of DBSs in suburban environment (T=100dB)")

%Suburban environment - 1 , 110dB - 3
suburban_coverage(1,:)=CS_avg_coverage(3,2,:);
suburban_coverage(2,:)=EHO_avg_coverage(3,2,:);
suburban_coverage(3,:)=GWO_avg_coverage(3,2,:);
suburban_coverage(4,:)=MBO_avg_coverage(3,2,:);
suburban_coverage(5,:)=SSA_avg_coverage(3,2,:);
suburban_coverage(6,:)=PSO_avg_coverage(3,2,:);
figure
plot(x,suburban_coverage)
legend("CS", "EHO", "GWO", "MBO", "SSA", "PSO")
xlabel("Number of DBSs")
ylabel("Coverage Probability")
title("Coverage probability as a function of the number of DBSs in suburban environment (T=110dB)")

%Suburban environment - 1 , 120dB - 4
suburban_coverage(1,:)=CS_avg_coverage(4,2,:);
suburban_coverage(2,:)=EHO_avg_coverage(4,2,:);
suburban_coverage(3,:)=GWO_avg_coverage(4,2,:);
suburban_coverage(4,:)=MBO_avg_coverage(4,2,:);
suburban_coverage(5,:)=SSA_avg_coverage(4,2,:);
suburban_coverage(6,:)=PSO_avg_coverage(4,2,:);
figure
plot(x,suburban_coverage)
legend("CS", "EHO", "GWO", "MBO", "SSA", "PSO")
xlabel("Number of DBSs")
ylabel("Coverage Probability")
title("Coverage probability as a function of the number of DBSs in suburban environment (T=120dB)")


%Dense urban environment - 1 , 90dB - 1
dense_coverage(1,:)=CS_avg_coverage(1,3,:);
dense_coverage(2,:)=EHO_avg_coverage(1,3,:);
dense_coverage(3,:)=GWO_avg_coverage(1,3,:);
dense_coverage(4,:)=MBO_avg_coverage(1,3,:);
dense_coverage(5,:)=SSA_avg_coverage(1,3,:);
dense_coverage(6,:)=PSO_avg_coverage(1,3,:);
figure
plot(x,dense_coverage)
legend("CS", "EHO", "GWO", "MBO", "SSA", "PSO")
xlabel("Number of DBSs")
ylabel("Coverage Probability")
title("Coverage probability as a function of the number of DBSs in dense urban environment (T=90dB)")

%Dense urban environment - 1 , 100dB - 2
dense_coverage(1,:)=CS_avg_coverage(2,3,:);
dense_coverage(2,:)=EHO_avg_coverage(2,3,:);
dense_coverage(3,:)=GWO_avg_coverage(2,3,:);
dense_coverage(4,:)=MBO_avg_coverage(2,3,:);
dense_coverage(5,:)=SSA_avg_coverage(2,3,:);
dense_coverage(6,:)=PSO_avg_coverage(2,3,:);
figure
plot(x,dense_coverage)
legend("CS", "EHO", "GWO", "MBO", "SSA", "PSO")
xlabel("Number of DBSs")
ylabel("Coverage Probability")
title("Coverage probability as a function of the number of DBSs in dense urban environment (T=100dB)")

%Dense urban environment - 1 , 110dB - 3
dense_coverage(1,:)=CS_avg_coverage(3,3,:);
dense_coverage(2,:)=EHO_avg_coverage(3,3,:);
dense_coverage(3,:)=GWO_avg_coverage(3,3,:);
dense_coverage(4,:)=MBO_avg_coverage(3,3,:);
dense_coverage(5,:)=SSA_avg_coverage(3,3,:);
dense_coverage(6,:)=PSO_avg_coverage(3,3,:);
figure
plot(x,dense_coverage)
legend("CS", "EHO", "GWO", "MBO", "SSA", "PSO")
xlabel("Number of DBSs")
ylabel("Coverage Probability")
title("Coverage probability as a function of the number of DBSs in dense urban environment (T=110dB)")

%Dense urban environment - 1 , 120dB - 4
dense_coverage(1,:)=CS_avg_coverage(4,3,:);
dense_coverage(2,:)=EHO_avg_coverage(4,3,:);
dense_coverage(3,:)=GWO_avg_coverage(4,3,:);
dense_coverage(4,:)=MBO_avg_coverage(4,3,:);
dense_coverage(5,:)=SSA_avg_coverage(4,3,:);
dense_coverage(6,:)=PSO_avg_coverage(4,3,:);
figure
plot(x,dense_coverage)
legend("CS", "EHO", "GWO", "MBO", "SSA", "PSO")
xlabel("Number of DBSs")
ylabel("Coverage Probability")
title("Coverage probability as a function of the number of DBSs in dense urban environment (T=120dB)")


%High-rise urban environment - 1 , 90dB - 1
highrise_coverage(1,:)=CS_avg_coverage(1,4,:);
highrise_coverage(2,:)=EHO_avg_coverage(1,4,:);
highrise_coverage(3,:)=GWO_avg_coverage(1,4,:);
highrise_coverage(4,:)=MBO_avg_coverage(1,4,:);
highrise_coverage(5,:)=SSA_avg_coverage(1,4,:);
highrise_coverage(6,:)=PSO_avg_coverage(1,4,:);
figure
plot(x,highrise_coverage)
legend("CS", "EHO", "GWO", "MBO", "SSA", "PSO")
xlabel("Number of DBSs")
ylabel("Coverage Probability")
title("Coverage probability as a function of the number of DBSs in high-rise urban environment (T=90dB)")

%High-rise urban environment - 1 , 100dB - 2
highrise_coverage(1,:)=CS_avg_coverage(2,4,:);
highrise_coverage(2,:)=EHO_avg_coverage(2,4,:);
highrise_coverage(3,:)=GWO_avg_coverage(2,4,:);
highrise_coverage(4,:)=MBO_avg_coverage(2,4,:);
highrise_coverage(5,:)=SSA_avg_coverage(2,4,:);
highrise_coverage(6,:)=PSO_avg_coverage(2,4,:);
figure
plot(x,highrise_coverage)
legend("CS", "EHO", "GWO", "MBO", "SSA", "PSO")
xlabel("Number of DBSs")
ylabel("Coverage Probability")
title("Coverage probability as a function of the number of DBSs in high-rise urban environment (T=100dB)")

%High-rise urban environment - 1 , 110dB - 3
highrise_coverage(1,:)=CS_avg_coverage(3,4,:);
highrise_coverage(2,:)=EHO_avg_coverage(3,4,:);
highrise_coverage(3,:)=GWO_avg_coverage(3,4,:);
highrise_coverage(4,:)=MBO_avg_coverage(3,4,:);
highrise_coverage(5,:)=SSA_avg_coverage(3,4,:);
highrise_coverage(6,:)=PSO_avg_coverage(3,4,:);
figure
plot(x,highrise_coverage)
legend("CS", "EHO", "GWO", "MBO", "SSA", "PSO")
xlabel("Number of DBSs")
ylabel("Coverage Probability")
title("Coverage probability as a function of the number of DBSs in high-rise urban environment (T=110dB)")

%High-rise urban environment - 1 , 120dB - 4
highrise_coverage(1,:)=CS_avg_coverage(4,4,:);
highrise_coverage(2,:)=EHO_avg_coverage(4,4,:);
highrise_coverage(3,:)=GWO_avg_coverage(4,4,:);
highrise_coverage(4,:)=MBO_avg_coverage(4,4,:);
highrise_coverage(5,:)=SSA_avg_coverage(4,4,:);
highrise_coverage(6,:)=PSO_avg_coverage(4,4,:);
figure
plot(x,highrise_coverage)
legend("CS", "EHO", "GWO", "MBO", "SSA", "PSO")
xlabel("Number of DBSs")
ylabel("Coverage Probability")
title("Coverage probability as a function of the number of DBSs in high-rise urban environment (T=120dB)")

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

OSCAR LIJEN HSU 1 AND CHE-RUNG LEE2文章来源地址https://www.toymoban.com/news/detail-842337.html

🌈4 Matlab代码、数据、文章下载

到了这里,关于基于多种优化算法的物联网无人机基站研究【布谷鸟搜索CS、大象群体优化EHO、灰狼优化GWO、帝王蝴蝶优化MBO、鲨鱼群算法SSA和粒子群优化PSO】(Matlab代码实现)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包