yolov5热力图生成和修改

这篇具有很好参考价值的文章主要介绍了yolov5热力图生成和修改。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

介绍一下yolov5怎么生成热力图,并且修改模型后如何生成热力图。

1、在原始yolov5中生成热力图

首先我们在原始版本的yolov5中进行一个热力图代码的搭建,后续修改模型后的热力图代码只需要在此基础上修改就可以了。

v5生成热力图的博客非常多,但是还是介绍一下吧。

1、代码版本

v5的版本是6.0

2、热力图代码

1、在项目根目录下创建一个main_gradcam.py

import os
import random
import time
import argparse
import numpy as np
from models.gradcam import YOLOV5GradCAM, YOLOV5GradCAMPP
from models.yolov5_object_detector import YOLOV5TorchObjectDetector
import cv2
# 数据集类别名
names = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
         'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
         'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
         'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
         'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
         'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
         'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
         'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
         'hair drier', 'toothbrush']  # class names
# yolov5s网络中的三个detect层
target_layers = ['model_17_cv3_act', 'model_20_cv3_act', 'model_23_cv3_act']

# Arguments
parser = argparse.ArgumentParser()
parser.add_argument('--model-path', type=str, default="yolov5s.pt", help='Path to the model')
parser.add_argument('--img-path', type=str, default='data/images/bus.jpg', help='input image path')
parser.add_argument('--output-dir', type=str, default='runs/result17', help='output dir')
parser.add_argument('--img-size', type=int, default=640, help="input image size")
parser.add_argument('--target-layer', type=str, default='model_17_cv3_act',
                    help='The layer hierarchical address to which gradcam will applied,'
                         ' the names should be separated by underline')
parser.add_argument('--method', type=str, default='gradcam', help='gradcam method')
parser.add_argument('--device', type=str, default='cuda', help='cuda or cpu')
parser.add_argument('--no_text_box', action='store_true',
                    help='do not show label and box on the heatmap')
args = parser.parse_args()


def get_res_img(bbox, mask, res_img):
    mask = mask.squeeze(0).mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).detach().cpu().numpy().astype(
        np.uint8)
    heatmap = cv2.applyColorMap(mask, cv2.COLORMAP_JET)
    # n_heatmat = (Box.fill_outer_box(heatmap, bbox) / 255).astype(np.float32)
    n_heatmat = (heatmap / 255).astype(np.float32)
    res_img = res_img / 255
    res_img = cv2.add(res_img, n_heatmat)
    res_img = (res_img / res_img.max())
    return res_img, n_heatmat


def plot_one_box(x, img, color=None, label=None, line_thickness=3):
    # this is a bug in cv2. It does not put box on a converted image from torch unless it's buffered and read again!
    cv2.imwrite('temp.jpg', (img * 255).astype(np.uint8))
    img = cv2.imread('temp.jpg')

    # Plots one bounding box on image img
    tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1  # line/font thickness
    color = color or [random.randint(0, 255) for _ in range(3)]
    c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
    cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)
    if label:
        tf = max(tl - 1, 1)  # font thickness
        t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
        outside = c1[1] - t_size[1] - 3 >= 0  # label fits outside box up
        c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3 if outside else c1[1] + t_size[1] + 3
        outsize_right = c2[0] - img.shape[:2][1] > 0  # label fits outside box right
        c1 = c1[0] - (c2[0] - img.shape[:2][1]) if outsize_right else c1[0], c1[1]
        c2 = c2[0] - (c2[0] - img.shape[:2][1]) if outsize_right else c2[0], c2[1]
        cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA)  # filled
        cv2.putText(img, label, (c1[0], c1[1] - 2 if outside else c2[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf,
                    lineType=cv2.LINE_AA)
    return img


# 检测单个图片
def main(img_path):
    colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
    device = args.device
    input_size = (args.img_size, args.img_size)
    # 读入图片
    img = cv2.imread(img_path)  # 读取图像格式:BGR
    print('[INFO] Loading the model')
    # 实例化YOLOv5模型,得到检测结果
    model = YOLOV5TorchObjectDetector(args.model_path, device, img_size=input_size, names=names)
    # img[..., ::-1]: BGR --> RGB
    # (480, 640, 3) --> (1, 3, 480, 640)
    torch_img = model.preprocessing(img[..., ::-1])
    tic = time.time()
    # 遍历三层检测层
    for target_layer in target_layers:
        # 获取grad-cam方法
        if args.method == 'gradcam':
            saliency_method = YOLOV5GradCAM(model=model, layer_name=target_layer, img_size=input_size)
        elif args.method == 'gradcampp':
            saliency_method = YOLOV5GradCAMPP(model=model, layer_name=target_layer, img_size=input_size)
        masks, logits, [boxes, _, class_names, conf] = saliency_method(torch_img)  # 得到预测结果
        result = torch_img.squeeze(0).mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).detach().cpu().numpy()
        result = result[..., ::-1]  # convert to bgr
        # 保存设置
        imgae_name = os.path.basename(img_path)  # 获取图片名
        save_path = f'{args.output_dir}{imgae_name[:-4]}/{args.method}'
        if not os.path.exists(save_path):
            os.makedirs(save_path)
        print(f'[INFO] Saving the final image at {save_path}')
        # 遍历每张图片中的每个目标
        for i, mask in enumerate(masks):
            # 遍历图片中的每个目标
            res_img = result.copy()
            # 获取目标的位置和类别信息
            bbox, cls_name = boxes[0][i], class_names[0][i]
            label = f'{cls_name} {conf[0][i]}'  # 类别+置信分数
            # 获取目标的热力图
            res_img, heat_map = get_res_img(bbox, mask, res_img)
            res_img = plot_one_box(bbox, res_img, label=label, color=colors[int(names.index(cls_name))],
                                   line_thickness=3)
            # 缩放到原图片大小
            res_img = cv2.resize(res_img, dsize=(img.shape[:-1][::-1]))
            output_path = f'{save_path}/{target_layer[6:8]}_{i}.jpg'
            cv2.imwrite(output_path, res_img)
            print(f'{target_layer[6:8]}_{i}.jpg done!!')
    print(f'Total time : {round(time.time() - tic, 4)} s')


if __name__ == '__main__':
    # 图片路径为文件夹
    if os.path.isdir(args.img_path):
        img_list = os.listdir(args.img_path)
        print(img_list)
        for item in img_list:
            # 依次获取文件夹中的图片名,组合成图片的路径
            main(os.path.join(args.img_path, item))
    # 单个图片
    else:
        main(args.img_path)

2、在model文件夹下添加如下两个py文件,分别是gradcam.py和yolov5_object_detector.py

yolov5 热力图,炼丹,深度学习,人工智能

gradcam.py代码如下:

import numpy as np
import torch
from models.experimental import attempt_load
from utils.general import xywh2xyxy
from utils.dataloaders import letterbox
import cv2
import time
import torchvision
import torch.nn as nn
from utils.metrics import box_iou


class YOLOV5TorchObjectDetector(nn.Module):
    def __init__(self,
                 model_weight,
                 device,
                 img_size,
                 names=None,
                 mode='eval',
                 confidence=0.45,
                 iou_thresh=0.45,
                 agnostic_nms=False):
        super(YOLOV5TorchObjectDetector, self).__init__()
        self.device = device
        self.model = None
        self.img_size = img_size
        self.mode = mode
        self.confidence = confidence
        self.iou_thresh = iou_thresh
        self.agnostic = agnostic_nms
        self.model = attempt_load(model_weight, inplace=False, fuse=False)
        self.model.requires_grad_(True)
        self.model.to(device)

        if self.mode == 'train':
            self.model.train()
        else:
            self.model.eval()
        # fetch the names
        if names is None:
            self.names = ['your dataset classname']
        else:
            self.names = names

        # preventing cold start
        img = torch.zeros((1, 3, *self.img_size), device=device)
        self.model(img)

    @staticmethod
    def non_max_suppression(prediction, logits, conf_thres=0.3, iou_thres=0.45, classes=None, agnostic=False,
                            multi_label=False, labels=(), max_det=300):
        """Runs Non-Maximum Suppression (NMS) on inference and logits results

        Returns:
             list of detections, on (n,6) tensor per image [xyxy, conf, cls] and pruned input logits (n, number-classes)
        """

        nc = prediction.shape[2] - 5  # number of classes
        xc = prediction[..., 4] > conf_thres  # candidates

        # Checks
        assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0'
        assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0'

        # Settings
        min_wh, max_wh = 2, 4096  # (pixels) minimum and maximum box width and height
        max_nms = 30000  # maximum number of boxes into torchvision.ops.nms()
        time_limit = 10.0  # seconds to quit after
        redundant = True  # require redundant detections
        multi_label &= nc > 1  # multiple labels per box (adds 0.5ms/img)
        merge = False  # use merge-NMS

        t = time.time()
        output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0]
        logits_output = [torch.zeros((0, nc), device=logits.device)] * logits.shape[0]
        # logits_output = [torch.zeros((0, 80), device=logits.device)] * logits.shape[0]
        for xi, (x, log_) in enumerate(zip(prediction, logits)):  # image index, image inference
            # Apply constraints
            # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0  # width-height
            x = x[xc[xi]]  # confidence
            log_ = log_[xc[xi]]
            # Cat apriori labels if autolabelling
            if labels and len(labels[xi]):
                l = labels[xi]
                v = torch.zeros((len(l), nc + 5), device=x.device)
                v[:, :4] = l[:, 1:5]  # box
                v[:, 4] = 1.0  # conf
                v[range(len(l)), l[:, 0].long() + 5] = 1.0  # cls
                x = torch.cat((x, v), 0)

            # If none remain process next image
            if not x.shape[0]:
                continue

            # Compute conf
            x[:, 5:] *= x[:, 4:5]  # conf = obj_conf * cls_conf
            # Box (center x, center y, width, height) to (x1, y1, x2, y2)
            box = xywh2xyxy(x[:, :4])

            # Detections matrix nx6 (xyxy, conf, cls)
            if multi_label:
                i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
                x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
            else:  # best class only
                conf, j = x[:, 5:].max(1, keepdim=True)
                x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
                log_ = log_[conf.view(-1) > conf_thres]
            # Filter by class
            if classes is not None:
                x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]

            # Check shape
            n = x.shape[0]  # number of boxes
            if not n:  # no boxes
                continue
            elif n > max_nms:  # excess boxes
                x = x[x[:, 4].argsort(descending=True)[:max_nms]]  # sort by confidence

            # Batched NMS
            c = x[:, 5:6] * (0 if agnostic else max_wh)  # classes
            boxes, scores = x[:, :4] + c, x[:, 4]  # boxes (offset by class), scores
            i = torchvision.ops.nms(boxes, scores, iou_thres)  # NMS
            if i.shape[0] > max_det:  # limit detections
                i = i[:max_det]
            if merge and (1 < n < 3E3):  # Merge NMS (boxes merged using weighted mean)
                # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
                iou = box_iou(boxes[i], boxes) > iou_thres  # iou matrix
                weights = iou * scores[None]  # box weights
                x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True)  # merged boxes
                if redundant:
                    i = i[iou.sum(1) > 1]  # require redundancy

            output[xi] = x[i]
            logits_output[xi] = log_[i]
            assert log_[i].shape[0] == x[i].shape[0]
            if (time.time() - t) > time_limit:
                print(f'WARNING: NMS time limit {time_limit}s exceeded')
                break  # time limit exceeded

        return output, logits_output

    @staticmethod
    def yolo_resize(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True):

        return letterbox(img, new_shape=new_shape, color=color, auto=auto, scaleFill=scaleFill, scaleup=scaleup)

    def forward(self, img):
        prediction, logits, _ = self.model(img, augment=False)
        prediction, logits = self.non_max_suppression(prediction, logits, self.confidence, self.iou_thresh,
                                                      classes=None,
                                                      agnostic=self.agnostic)
        self.boxes, self.class_names, self.classes, self.confidences = [[[] for _ in range(img.shape[0])] for _ in
                                                                        range(4)]
        for i, det in enumerate(prediction):  # detections per image
            if len(det):
                for *xyxy, conf, cls in det:
                    # 返回整数
                    bbox = [int(b) for b in xyxy]
                    self.boxes[i].append(bbox)
                    self.confidences[i].append(round(conf.item(), 2))
                    cls = int(cls.item())
                    self.classes[i].append(cls)
                    if self.names is not None:
                        self.class_names[i].append(self.names[cls])
                    else:
                        self.class_names[i].append(cls)
        return [self.boxes, self.classes, self.class_names, self.confidences], logits

    def preprocessing(self, img):
        if len(img.shape) != 4:
            img = np.expand_dims(img, axis=0)
        im0 = img.astype(np.uint8)
        img = np.array([self.yolo_resize(im, new_shape=self.img_size)[0] for im in im0])
        img = img.transpose((0, 3, 1, 2))
        img = np.ascontiguousarray(img)
        img = torch.from_numpy(img).to(self.device)
        img = img / 255.0
        return img

yolov5_object_detector.py的代码如下:

import numpy as np
import torch
from models.experimental import attempt_load
from utils.general import xywh2xyxy
from utils.dataloaders import letterbox
import cv2
import time
import torchvision
import torch.nn as nn
from utils.metrics import box_iou


class YOLOV5TorchObjectDetector(nn.Module):
    def __init__(self,
                 model_weight,
                 device,
                 img_size,
                 names=None,
                 mode='eval',
                 confidence=0.45,
                 iou_thresh=0.45,
                 agnostic_nms=False):
        super(YOLOV5TorchObjectDetector, self).__init__()
        self.device = device
        self.model = None
        self.img_size = img_size
        self.mode = mode
        self.confidence = confidence
        self.iou_thresh = iou_thresh
        self.agnostic = agnostic_nms
        self.model = attempt_load(model_weight, inplace=False, fuse=False)
        self.model.requires_grad_(True)
        self.model.to(device)

        if self.mode == 'train':
            self.model.train()
        else:
            self.model.eval()
        # fetch the names
        if names is None:
            self.names = ['your dataset classname']
        else:
            self.names = names

        # preventing cold start
        img = torch.zeros((1, 3, *self.img_size), device=device)
        self.model(img)

    @staticmethod
    def non_max_suppression(prediction, logits, conf_thres=0.3, iou_thres=0.45, classes=None, agnostic=False,
                            multi_label=False, labels=(), max_det=300):
        """Runs Non-Maximum Suppression (NMS) on inference and logits results

        Returns:
             list of detections, on (n,6) tensor per image [xyxy, conf, cls] and pruned input logits (n, number-classes)
        """

        nc = prediction.shape[2] - 5  # number of classes
        xc = prediction[..., 4] > conf_thres  # candidates

        # Checks
        assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0'
        assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0'

        # Settings
        min_wh, max_wh = 2, 4096  # (pixels) minimum and maximum box width and height
        max_nms = 30000  # maximum number of boxes into torchvision.ops.nms()
        time_limit = 10.0  # seconds to quit after
        redundant = True  # require redundant detections
        multi_label &= nc > 1  # multiple labels per box (adds 0.5ms/img)
        merge = False  # use merge-NMS

        t = time.time()
        output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0]
        logits_output = [torch.zeros((0, nc), device=logits.device)] * logits.shape[0]
        # logits_output = [torch.zeros((0, 80), device=logits.device)] * logits.shape[0]
        for xi, (x, log_) in enumerate(zip(prediction, logits)):  # image index, image inference
            # Apply constraints
            # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0  # width-height
            x = x[xc[xi]]  # confidence
            log_ = log_[xc[xi]]
            # Cat apriori labels if autolabelling
            if labels and len(labels[xi]):
                l = labels[xi]
                v = torch.zeros((len(l), nc + 5), device=x.device)
                v[:, :4] = l[:, 1:5]  # box
                v[:, 4] = 1.0  # conf
                v[range(len(l)), l[:, 0].long() + 5] = 1.0  # cls
                x = torch.cat((x, v), 0)

            # If none remain process next image
            if not x.shape[0]:
                continue

            # Compute conf
            x[:, 5:] *= x[:, 4:5]  # conf = obj_conf * cls_conf
            # Box (center x, center y, width, height) to (x1, y1, x2, y2)
            box = xywh2xyxy(x[:, :4])

            # Detections matrix nx6 (xyxy, conf, cls)
            if multi_label:
                i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
                x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
            else:  # best class only
                conf, j = x[:, 5:].max(1, keepdim=True)
                x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
                log_ = log_[conf.view(-1) > conf_thres]
            # Filter by class
            if classes is not None:
                x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]

            # Check shape
            n = x.shape[0]  # number of boxes
            if not n:  # no boxes
                continue
            elif n > max_nms:  # excess boxes
                x = x[x[:, 4].argsort(descending=True)[:max_nms]]  # sort by confidence

            # Batched NMS
            c = x[:, 5:6] * (0 if agnostic else max_wh)  # classes
            boxes, scores = x[:, :4] + c, x[:, 4]  # boxes (offset by class), scores
            i = torchvision.ops.nms(boxes, scores, iou_thres)  # NMS
            if i.shape[0] > max_det:  # limit detections
                i = i[:max_det]
            if merge and (1 < n < 3E3):  # Merge NMS (boxes merged using weighted mean)
                # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
                iou = box_iou(boxes[i], boxes) > iou_thres  # iou matrix
                weights = iou * scores[None]  # box weights
                x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True)  # merged boxes
                if redundant:
                    i = i[iou.sum(1) > 1]  # require redundancy

            output[xi] = x[i]
            logits_output[xi] = log_[i]
            assert log_[i].shape[0] == x[i].shape[0]
            if (time.time() - t) > time_limit:
                print(f'WARNING: NMS time limit {time_limit}s exceeded')
                break  # time limit exceeded

        return output, logits_output

    @staticmethod
    def yolo_resize(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True):

        return letterbox(img, new_shape=new_shape, color=color, auto=auto, scaleFill=scaleFill, scaleup=scaleup)

    def forward(self, img):
        prediction, logits, _ = self.model(img, augment=False)
        prediction, logits = self.non_max_suppression(prediction, logits, self.confidence, self.iou_thresh,
                                                      classes=None,
                                                      agnostic=self.agnostic)
        self.boxes, self.class_names, self.classes, self.confidences = [[[] for _ in range(img.shape[0])] for _ in
                                                                        range(4)]
        for i, det in enumerate(prediction):  # detections per image
            if len(det):
                for *xyxy, conf, cls in det:
                    # 返回整数
                    bbox = [int(b) for b in xyxy]
                    self.boxes[i].append(bbox)
                    self.confidences[i].append(round(conf.item(), 2))
                    cls = int(cls.item())
                    self.classes[i].append(cls)
                    if self.names is not None:
                        self.class_names[i].append(self.names[cls])
                    else:
                        self.class_names[i].append(cls)
        return [self.boxes, self.classes, self.class_names, self.confidences], logits

    def preprocessing(self, img):
        if len(img.shape) != 4:
            img = np.expand_dims(img, axis=0)
        im0 = img.astype(np.uint8)
        img = np.array([self.yolo_resize(im, new_shape=self.img_size)[0] for im in im0])
        img = img.transpose((0, 3, 1, 2))
        img = np.ascontiguousarray(img)
        img = torch.from_numpy(img).to(self.device)
        img = img / 255.0
        return img

 3、更改model/yolo.py

①修改Detect类中的forward函数

    def forward(self, x):
        z = []  # inference output

        logits_ = []               # 修改---1

        for i in range(self.nl):
            x[i] = self.m[i](x[i])  # conv
            bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
            x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()

            if not self.training:  # inference
                if self.dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
                    self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)

                logits = x[i][..., 5:]                 # 修改---2


                if isinstance(self, Segment):  # (boxes + masks)
                    xy, wh, conf, mask = x[i].split((2, 2, self.nc + 1, self.no - self.nc - 5), 4)
                    xy = (xy.sigmoid() * 2 + self.grid[i]) * self.stride[i]  # xy
                    wh = (wh.sigmoid() * 2) ** 2 * self.anchor_grid[i]  # wh
                    y = torch.cat((xy, wh, conf.sigmoid(), mask), 4)
                else:  # Detect (boxes only)
                    xy, wh, conf = x[i].sigmoid().split((2, 2, self.nc + 1), 4)
                    xy = (xy * 2 + self.grid[i]) * self.stride[i]  # xy
                    wh = (wh * 2) ** 2 * self.anchor_grid[i]  # wh
                    y = torch.cat((xy, wh, conf), 4)
                z.append(y.view(bs, self.na * nx * ny, self.no))

                logits_.append(logits.view(bs, -1, self.no - 5))     # 修改---3

        # return x if self.training else (torch.cat(z, 1),) if self.export else (torch.cat(z, 1), x)
        return x if self.training else (torch.cat(z, 1), torch.cat(logits_, 1), x)  # 修改---4

 6、运行main_gradcam.py

参数列表可以自己进行修改。

# Arguments
parser = argparse.ArgumentParser()
parser.add_argument('--model-path', type=str, default="yolov5s.pt", help='Path to the model')
parser.add_argument('--img-path', type=str, default='data/images/bus.jpg', help='input image path')
parser.add_argument('--output-dir', type=str, default='runs/result17', help='output dir')
parser.add_argument('--img-size', type=int, default=640, help="input image size")
parser.add_argument('--target-layer', type=str, default='model_17_cv3_act',
                    help='The layer hierarchical address to which gradcam will applied,'
                         ' the names should be separated by underline')
parser.add_argument('--method', type=str, default='gradcam', help='gradcam method')
parser.add_argument('--device', type=str, default='cuda', help='cuda or cpu')
parser.add_argument('--no_text_box', action='store_true',
                    help='do not show label and box on the heatmap')
args = parser.parse_args()

 --model-path:要用于检测图片的网络权重路径,要用修改过的v5权重生成热力图需要修改这里。

3、本博的重点:如何生成修改后的v5网络的热力图

1、修改训练类别名。

在main_gradcam.py中 names是存放训练类别的字典,yolov5s.pt是训练coco的80个类别,因此这里放的是coco的类别名,训练自己的权重要换成自己的数据集类别名。

yolov5 热力图,炼丹,深度学习,人工智能

2、修改生成的热力图的网络层

代码中target_layers是生成热力图的目标层。这里是Neck中输出的3层C3

target_layers = ['model_17_cv3_act', 'model_20_cv3_act', 'model_23_cv3_act']

yolov5 热力图,炼丹,深度学习,人工智能

 读取网络层采用字典类型,‘model_17_cv3_act’ 分别对应self.model中模型数据、模块索引、模块名、模块中的网络层。

我们debug看看,把断点打到models/gradcam.py的

        target_layer = find_yolo_layer(self.model, layer_name)

Evaluate一下self.model。

yolov5 热力图,炼丹,深度学习,人工智能

可以看到在模型中C3模块在第17层,和配置文件yolov5s.yaml中的层数是一样的,模块名字是cv3,模块中的网络层数是act层,也就是激活函数层,一般都是选择在激活函数层后面生成热力图。

yolov5 热力图,炼丹,深度学习,人工智能

 因此,要查看自己训练的权重的热力图,首先要根据自己网络的配置文件来寻找网络层。

重要提示:因为target_layers层是根据关键点+下划线的方式寻找网络层的,修改yolov5的模块是最好不要在网络层的名字中带下划线_,否则会无法找到网络层,又需要重头训练权重。文章来源地址https://www.toymoban.com/news/detail-842720.html

target_layers = ['model_17_cv3_act', 'model_20_cv3_act', 'model_23_cv3_act']

到了这里,关于yolov5热力图生成和修改的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 深度学习基础——YOLOv5目标检测

            YOLO系列算法属于基于回归的单阶段目标检测算法,它将定位与分类两个任务整合成一个任务,直接通过CNN网络提取全局信息并预测图片上的目标。给目标检测算法提供了新的解决方案,并且图片检测速度准确率与召回率达到实时检测的要求。其中YOLOv1、YOLO2、YO

    2024年02月22日
    浏览(46)
  • 深度学习 yolov5等结构图

    今天整理文件时看到自己之前用PPT画的一些结构图,可能也许会有人用得上,就上传上来吧哈哈哈别说这些图画起来还挺费时的,放上PPT版链接可以根据自己的需求更改。 如果有时间的话还是自己动手画一画,画的过程也可以加深对网络结构的理解。 PPT版网盘链接:提取码

    2023年04月24日
    浏览(55)
  • 深度学习卷积神经网络YOLOv5详解

    Yolov5官方代码中,给出的目标检测网络中一共有4个版本,分别是 Yolov5s、Yolov5m、Yolov5l、Yolov5x 四个模型。 学习一个新的算法,最好在脑海中对 算法网络的整体架构 有一个清晰的理解。 但比较尴尬的是, Yolov5代码 中给出的网络文件是 yaml格式 ,和原本Yolov3、Yolov4中的 cfg 不

    2024年02月04日
    浏览(45)
  • yolov5热力图可视化grad-cam踩坑经验分享

    最近在做热力图的可视化,网上搜了很多的资料,但是大部分都是需要在原网络结构上进行修改,非常的不方便。最后在网上找到一位博主分享的即插即用的模块,觉得效果还可以,但是中间有些细节,需要注意。 原博文地址: https://blog.csdn.net/qq_37706472/article/details/12871460

    2024年02月04日
    浏览(45)
  • 深度学习||YOLO(You Only Look Once)深度学习的实时目标检测算法(YOLOv1~YOLOv5)

    目录 YOLOv1: YOLOv2: YOLOv3: YOLOv4: YOLOv5: 总结: YOLO(You Only Look Once)是一系列基于深度学习的实时目标检测算法。 自从2015年首次被提出以来,YOLO系列不断发展,推出了多个版本,包括YOLOv1, YOLOv2, YOLOv3, YOLOv4, 和YOLOv5等。下面是对YOLO系列的详解: 提出时间 : 2015年。 主要贡献 :

    2024年02月20日
    浏览(58)
  • 基于深度学习yolov5行人社交安全距离监测系统

    欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。   基于深度学习 YOLOv5 的行人社交安全距离监测系统是一种基于计算机视觉和深度学习技术的解决方案,用于实时监测和预测行人的社交安全距离。该系统主要应用在公共场所,如公园、商场、

    2024年02月05日
    浏览(46)
  • 深度学习图像识别笔记(三):yolov5检测结果分析

    是一种可视化工具,特别用于监督学习。通过这个矩阵,可以很清晰地看出机器是否将两个不同的类混淆了。 上图的表格其实就是 confusion matrix True/False: 预测结果是否正确 Positive/Negative:预测的方向是正方向还是负方向 真阳性(True Positive, TP): 预测为正样本,实际为正样

    2023年04月25日
    浏览(43)
  • 基于深度学习的车牌+车辆识别(YOLOv5和CNN)

    yolov5车牌识别+车辆识别 行人识别yolov5和v7对比 一、综述 二、车牌检测 本篇文章是面向的是小白,想要学习深度学习上的应用,本文中目前应用了YOLO v5和CNN来对车牌进行处理,最终形成一个完整的车牌信息记录,如果我写的有什么不对或者需要改进的地方࿰

    2024年02月04日
    浏览(49)
  • 深度学习 Day 31——YOLOv5-Backbone模块实现

    在上一期博客中我们将利用YOLOv5算法中的C3模块搭建网络,了解学习一下C3的结构,并在最后我们尝试增加C3模块来进行训练模型,看看准确率是否增加了。本期博客我们将学习另一个模块(Backbone)的实现,我们将利用这个模块搭建网络进行上一期博客实现的天气识别,对比

    2023年04月21日
    浏览(46)
  • Ubuntu20.04配置深度学习环境yolov5最简流程

    1.首先给Ubuntu安装Chrome浏览器(搜索引擎换成百度即可) 安装命令:打开终端直接输入 2.换成搜狗输入法(如果安装完成无法打汉字,可输入以下命令) 3. 安装WPS for Linux 进入搜狗for linux官网下载搜狗输入法 ,下载x86版本 4. 安装其它之前需要先安装anaconda 先去官网下载好a

    2024年02月08日
    浏览(52)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包