Python与FPGA——图像锐化

这篇具有很好参考价值的文章主要介绍了Python与FPGA——图像锐化。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


前言

  在增强图像之前一般会先对图像进行平滑处理以减少或消除噪声,图像的能量主要集中在低频部分,而噪声和图像边缘信息的能量主要集中在高频部分。因此,平滑处理会使原始的图像边缘和轮廓变得模糊。为了减少不利效果的影响,需要利用图像锐化技术。


一、图像锐化

  图像锐化其实就是使用robert,sobel,laplacian这些人发明的窗口,进行图像的处理。图像锐化过程和sobel边缘检测的过程类似,可以移步至《Python与FPGA——sobel边缘检测》课程,一探究竟。

一阶微分的边缘检测
  图像f(x, y)在像素(x, y)梯度的定义为
G = ∂ f ∂ x + ∂ f ∂ y G = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} G=xf+yf
也可以用差分来替代微分,即
∂ f ∂ x = f ( i + 1 , j ) − f ( i , j ) \frac{\partial f}{\partial x} = f(i + 1, j) - f(i, j) xf=f(i+1,j)f(i,j)
∂ f ∂ y = f ( i , j + 1 ) − f ( i , j ) \frac{\partial f}{\partial y} = f(i, j + 1) - f(i, j) yf=f(i,j+1)f(i,j)
梯度的幅值即模值,为
∣ G ∣ = ( ∂ f ∂ x ) 2 + ( ∂ f ∂ y ) 2 = [ f ( i + 1 , j ) − f ( i , j ) ] 2 + [ f ( i , j ) − f ( i , j ) ] 2 |G| = \sqrt{(\frac{\partial f}{\partial x})^2 + (\frac{\partial f}{\partial y})^2} = \sqrt{[f(i + 1, j) - f(i, j)]^2 + [f(i, j ) - f(i, j)]^2} G=(xf)2+(yf)2 =[f(i+1,j)f(i,j)]2+[f(i,j)f(i,j)]2
梯度方向为
θ = a r c t a n ( ∂ f ∂ y / ∂ f ∂ x ) = a r c t a n [ f ( i , j + 1 ) − f ( i , j ) f ( i + 1 , j ) − f ( i , j ) ] \theta = arctan(\frac{\partial f}{\partial y}/\frac{\partial f}{\partial x}) = arctan[\frac{f(i, j + 1) - f(i, j)}{f(i + 1, j) - f(i, j)}] θ=arctan(yf/xf)=arctan[f(i+1,j)f(i,j)f(i,j+1)f(i,j)]
图像f(i, j)处的梯度g为
g ( i , j ) = G [ f ( i , j ) ] g(i, j) = G[f(i, j)] g(i,j)=G[f(i,j)]
使用 g ( i , j ) g(i, j) g(i,j)去替代原来的像素。
  一阶导算子有robert算子,perwitt算子,sobel算子。
1. Roberts算子
G x = [ 1 0 0 − 1 ] G y = [ 0 − 1 1 0 ] G_x = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad\quad\quad G_y = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} Gx=[1001]Gy=[0110]
2. Prewitt算子
G x = [ − 1 0 1 − 1 0 1 − 1 0 1 ] G y = [ − 1 − 1 − 1 0 0 0 1 1 1 ] G_x = \begin{bmatrix} -1 & 0 & 1\\ -1 & 0 & 1\\ -1 & 0 & 1 \end{bmatrix} \quad\quad\quad G_y = \begin{bmatrix} -1 & -1 & -1\\ 0 & 0 & 0\\ 1 & 1 & 1 \end{bmatrix} Gx=111000111Gy=101101101
3. Sobel算子
G x = [ − 1 0 + 1 − 2 0 + 2 − 1 0 + 1 ] G y = [ + 1 + 2 + 1 0 0 0 − 1 − 2 1 ] G_x = \begin{bmatrix} -1 & 0 & +1\\ -2 & 0 & +2\\ -1 & 0 & +1 \end{bmatrix} \quad\quad\quad G_y = \begin{bmatrix} +1 & +2 & +1\\ 0 & 0 & 0\\ -1 & -2 & 1 \end{bmatrix} Gx=121000+1+2+1Gy=+101+202+101

二阶微分的边缘检测
  二阶微分公式用差分法,推理如下
∂ 2 f ∂ x 2 = 2 f ( x , y ) − f ( x − 1 , y ) − f ( x + 1 , y ) \frac{\partial^2 f}{\partial x^2}=2f(x,y)-f(x-1,y)-f(x+1, y) x22f=2f(x,y)f(x1,y)f(x+1,y)
∂ 2 f ∂ y 2 = 2 f ( x , y ) − f ( x , y − 1 ) − f ( x , y + 1 ) \frac{\partial^2 f}{\partial y^2}=2f(x,y)-f(x,y-1)-f(x, y+1) y22f=2f(x,y)f(x,y1)f(x,y+1)
▽ 2 f = 4 f ( x , y ) − [ f ( x − 1 , y ) + f ( x , y − 1 ) + f ( x , y + 1 ) + f ( x + 1 , y ) ] \triangledown^2f=4f(x,y)-[f(x-1,y)+f(x,y-1)+f(x,y+1)+f(x+1,y)] 2f=4f(x,y)[f(x1,y)+f(x,y1)+f(x,y+1)+f(x+1,y)]
符合二阶微分的算子是laplacian。

G x = [ 0 − 1 0 − 1 4 − 1 0 − 1 0 ] G y = [ − 1 − 1 − 1 − 1 8 − 1 − 1 − 1 − 1 ] G_x = \begin{bmatrix} 0 & -1 & 0\\ -1 & 4 & -1\\ 0 & -1 & 0 \end{bmatrix} \quad\quad\quad G_y = \begin{bmatrix} -1 & -1 & -1\\ -1 & 8 & -1\\ -1 & -1 & -1 \end{bmatrix} Gx=010141010Gy=111181111

二、Python robert锐化

import numpy as np
import matplotlib.pyplot as plt
def image_gray(image):
    gray = np.dot(image[:, :, ...], [0.299, 0.587, 0.114])#等同0.299 * image[:, :, 0] + 0.587 * image[:, :, 1] + 0.114 * image[:, :, 2]
    return gray.astype(np.uint8)
    
def robert_sharpen(image, gx, gy):
    h, w = image.shape
    n, n = gx.shape
    filtered_image = np.zeros((h, w))
    m = int(n / 2)
    for i in range(m, h - m):
        for j in range(m, w - m):   
            gx_value = np.sum(np.multiply(gx, image[i - m: i + m, j - m: j + m]))
            gy_value = np.sum(np.multiply(gy, image[i - m: i + m, j - m: j + m]))
            gxy_value = np.sqrt(gx_value ** 2 + gy_value ** 2)
            filtered_image[i, j] = gxy_value
    return filtered_image.astype(np.uint8)
    
img = plt.imread("lenna.png")
img = img * 255#图像是[0-1]--->[0-255],确认一下自己的图像是[0-1]还是[0-255]
img = img.astype(np.uint8)
gx = np.array([[1, 0],
               [0, -1]])
gy = np.array([[0, 1],
               [-1, 0]])
gray = image_gray(img)
robert_image = robert_sharpen(gray, gx, gy)
fig = plt.figure(figsize=(10, 6))
ax = plt.subplot(1, 2, 1)
ax.set_title("raw image")
ax.set_xlabel("width")
ax.set_ylabel("height")
plt.imshow(gray, cmap="gray")
ax = plt.subplot(1, 2, 2)
ax.set_title("robert image")
ax.set_xlabel("width")
ax.set_ylabel("height")
plt.imshow(robert_image, cmap="gray")

Python与FPGA——图像锐化,Python与FPGA,python,fpga开发,开发语言

三、Python sobel锐化

import numpy as np
import matplotlib.pyplot as plt
def image_gray(image):
    gray = np.dot(image[:, :, ...], [0.299, 0.587, 0.114])#等同0.299 * image[:, :, 0] + 0.587 * image[:, :, 1] + 0.114 * image[:, :, 2]
    return gray.astype(np.uint8)
    
def sobel_sharpen(image, gx, gy):
    h, w = image.shape
    n, n = gx.shape
    filtered_image = np.zeros((h, w))
    m = int((n-1) / 2)
    for i in range(m, h - m):
        for j in range(m, w - m):   
            gx_value = np.sum(np.multiply(gx, image[i - m: i + m + 1, j - m: j + m + 1]))
            gy_value = np.sum(np.multiply(gy, image[i - m: i + m + 1, j - m: j + m + 1]))
            gxy_value = np.sqrt(gx_value ** 2 + gy_value ** 2)
            filtered_image[i, j] = gxy_value
    return filtered_image.astype(np.uint8)
    
img = plt.imread("lenna.png")
img = img * 255#图像是[0-1]--->[0-255],确认一下自己的图像是[0-1]还是[0-255]
img = img.astype(np.uint8)
gx = np.array([[-1, 0, 1],
               [-2, 0, 2],
               [-1, 0, 1]])
gy = np.array([[-1, -2, -1],
               [0, 0, 0],
               [1, 2, 1]])
gray = image_gray(img)
sobel_image = sobel_sharpen(gray, gx, gy)
fig = plt.figure(figsize=(10, 6))
ax = plt.subplot(1, 2, 1)
ax.set_title("raw image")
ax.set_xlabel("width")
ax.set_ylabel("height")
plt.imshow(gray, cmap="gray")
ax = plt.subplot(1, 2, 2)
ax.set_title("sobel image")
ax.set_xlabel("width")
ax.set_ylabel("height")
plt.imshow(sobel_image, cmap="gray")

Python与FPGA——图像锐化,Python与FPGA,python,fpga开发,开发语言

四、Python laplacian锐化

import numpy as np
import matplotlib.pyplot as plt
def image_gray(image):
    gray = np.dot(image[:, :, ...], [0.299, 0.587, 0.114])#等同0.299 * image[:, :, 0] + 0.587 * image[:, :, 1] + 0.114 * image[:, :, 2]
    return gray.astype(np.uint8)
    
def laplacian_sharpen(image, gx, gy):
    h, w = image.shape
    n, n = gx.shape
    filtered_image = np.zeros((h, w))
    m = int((n-1) / 2)
    for i in range(m, h - m):
        for j in range(m, w - m):   
            gx_value = np.sum(np.multiply(gx, image[i - m: i + m + 1, j - m: j + m + 1]))
            gy_value = np.sum(np.multiply(gy, image[i - m: i + m + 1, j - m: j + m + 1]))
            gxy_value = np.sqrt(gx_value ** 2 + gy_value ** 2)
            filtered_image[i, j] = gxy_value
    return filtered_image.astype(np.uint8)
    
img = plt.imread("lenna.png")
img = img * 255#图像是[0-1]--->[0-255],确认一下自己的图像是[0-1]还是[0-255]
img = img.astype(np.uint8)
gx = np.array([[0, -1, 0],
               [-1, 4, -1],
               [0, -1, 0]])
gy = np.array([[-1, -1, -1],
               [-1, 8, -1],
               [-1, -1, -1]])
gray = image_gray(img)
sobel_image = sobel_sharpen(gray, gx, gy)
fig = plt.figure(figsize=(10, 6))
ax = plt.subplot(1, 2, 1)
ax.set_title("raw image")
ax.set_xlabel("width")
ax.set_ylabel("height")
plt.imshow(gray, cmap="gray")
ax = plt.subplot(1, 2, 2)
ax.set_title("sobel image")
ax.set_xlabel("width")
ax.set_ylabel("height")
plt.imshow(sobel_image, cmap="gray")

Python与FPGA——图像锐化,Python与FPGA,python,fpga开发,开发语言

五、FPGA sobel锐化

//3*3图像
//P11   P12   P13
//P21   P22   P23
//P31   P32   P33

//Gx算子
//-1     0     1
//-2     0     2
//-1     0     1
//Gx = -P11 + P13 - 2*P21 + 2*P23 - P31 + P33
//Gx = (P13 - P11) + 2*(P23 - P21) + (P33 - P31)

//Gy算子
//1      2     1
//0      0     0
//-1     -2    -1
//Gy = P11 + 2*P12 + P13 - P31 - 2*P32 - P33
//Gy = (P11 - P31) + 2*(P12 - P32) + (P13 - P33)
module  ycbcr_sobel_sharpen
(
	input	wire			sys_clk		,	//系统时钟,频率为50MHZ
	input	wire			sys_rst_n	,	//系统复位,低电平有效
	input	wire			rgb_valid	,	//RGB565图像显示有效信号
	input	wire	[7:0]	y_data		,	//Y分量
	input	wire	[11:0]	pixel_x		,	//有效显示区域横坐标
	input	wire	[11:0]	pixel_y		,	//有效显示区域纵坐标
	
	output	reg		[15:0]	sobel_data		//Sobel算法处理后的图像数据
);

reg				y_valid		;	//Y分量有效信号
//shift ram
wire	[7:0]	data_row1	;	//移位寄存器第一行数据
wire	[7:0]	data_row2	;	//移位寄存器第二行数据
wire	[7:0]	data_row3	;	//移位寄存器第三行数据
//3*3像素数据,左上角至右下角共9个数据
reg		[7:0]	p11			;	//3*3第1个像素数据
reg		[7:0]	p12			;	//3*3第2个像素数据
reg		[7:0]	p13			;	//3*3第3个像素数据
reg		[7:0]	p21			;	//3*3第4个像素数据
reg		[7:0]	p22			;	//3*3第5个像素数据
reg		[7:0]	p23			;	//3*3第6个像素数据
reg		[7:0]	p31			;	//3*3第7个像素数据
reg		[7:0]	p32			;	//3*3第8个像素数据
reg		[7:0]	p33			;	//3*3第9个像素数据
//Sobel算子
wire	[15:0]	Gx			;	//水平梯度值
wire	[15:0]	Gy			;	//数值梯度值
wire	[7:0]	Gxy			;	//总体梯度值

assign  data_row3 = y_data  ;
assign  Gx = (p13 - p11) + 2*(p23 - p21) + (p33 - p31)  ;
assign  Gy = (p11 - p31) + 2*(p12 - p32) + (p13 - p33)  ;

//设定第一行、第二行,第一列、第二列显示全白色
always@(*)
	if((pixel_y == 12'd0)||(pixel_y == 12'd1)||(pixel_x == 12'd2)||(pixel_x == 12'd3))
		sobel_data = 16'hffff  ;
	else
		sobel_data = {Gxy[7:3],Gxy[7:2],Gxy[7:3]}  ;//锐化核心代码

always@(posedge sys_clk or negedge sys_rst_n)
	if(sys_rst_n == 1'b0)
		y_valid  <=  1'b0  ;
	else
		y_valid  <=  rgb_valid  ;

always@(posedge sys_clk or negedge sys_rst_n)
	if(sys_rst_n == 1'b0)
		begin
			{p11,p12,p13}  <=  24'd0  ;
			{p21,p22,p23}  <=  24'd0  ;
			{p31,p32,p33}  <=  24'd0  ;
		end
	else  if(y_valid == 1'b1)
		begin
			{p11,p12,p13}  <= {p12,p13,data_row1}  ;
			{p21,p22,p23}  <= {p22,p23,data_row2}  ;
			{p31,p32,p33}  <= {p32,p33,data_row3}  ;
		end	
	else
		begin
			{p11,p12,p13}  <=  24'd0  ;
			{p21,p22,p23}  <=  24'd0  ;
			{p31,p32,p33}  <=  24'd0  ;
		end		

shift_ram_gen  shift_ram_gen_inst
(
	.clock 		(sys_clk	),
	.shiftin	(data_row3	),
	.shiftout 	(			),
	.taps0x 	(data_row2	),
	.taps1x 	(data_row1	)
);

sqrt_gen  sqrt_gen_inst 
(
	.radical	(Gx*Gx + Gy*Gy),
	.q 			(Gxy	),
	.remainder 	()
);

endmodule

Python与FPGA——图像锐化,Python与FPGA,python,fpga开发,开发语言


总结

  图像锐化就到此结束,剩下的交给小伙伴自行实现。Python的prewitt实现;FPGA的robert、prewitt、laplacian算子实现,你都可以尝试。文章来源地址https://www.toymoban.com/news/detail-842735.html

到了这里,关于Python与FPGA——图像锐化的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • (数字图像处理MATLAB+Python)第七章图像锐化-第三节:高斯滤波与边缘检测

    高斯函数 :是一种常见的连续函数,通常用符号 G ( x ) G(x) G ( x ) 表示。它可以用下面的公式定义 G ( x ) = 1 σ 2 π e − x 2 2 σ 2 G(x)=frac{1}{sigma sqrt{ 2pi }}e^{-frac{x^{2}}{2sigma^{2}}} G ( x ) = σ 2 π ​ 1 ​ e − 2 σ 2 x 2 ​ 其中, x x x 是自变量, σ sigma σ 是一个正实数,表示高斯函

    2024年02月06日
    浏览(57)
  • Python从0到1丨详解图像锐化的Sobel、Laplacian算子

    本文分享自华为云社区《[Python从零到壹] 五十八.图像增强及运算篇之图像锐化Sobel、Laplacian算子实现边缘检测》,作者: eastmount 。 Sobel算子是一种用于边缘检测的离散微分算子,它结合了高斯平滑和微分求导。该算子用于计算图像明暗程度近似值,根据图像边缘旁边明暗程

    2024年02月09日
    浏览(39)
  • 【图像增强——7种锐化方法原理与实现(C++、Python、shader GLSL)】

    Image sharpening algorithms are a technique used to enhance details and edges in images. These methods can all be used for image sharpening. In short, sharpening is about enhancing the difference on edges (what is an edge, see image edge detection, etc.) to highlight the color brightness value between pixels around the edge. Edge detection is to find the edg

    2024年02月07日
    浏览(53)
  • (数字图像处理MATLAB+Python)第七章图像锐化-第四节:频域高通滤波与综合案例

    频域高通滤波 :是一种基于频域表示的图像处理技术,用于增强或突出图像中高频成分的方法。它通过将图像转换到频域,应用高通滤波器来抑制或减弱低频成分,从而增强图像的边缘和细节 在频域中,可以设计各种类型的高通滤波器来实现不同的频率响应 理想的高通滤波

    2024年02月08日
    浏览(61)
  • Python从零到壹丨详解图像锐化Roberts、Prewitt算子实现边缘检测

    摘要: 图像锐化和边缘提取技术可以消除图像中的噪声,提取图像信息中用来表征图像的一些变量,为图像识别提供基础。本章主要介绍Robert算子、Prewitt算子、Sobel算子、Laplacian算子、Scharr算子等。 本文分享自华为云社区《[Python从零到壹] 五十七.图像增强及运算篇之图像锐

    2024年02月05日
    浏览(53)
  • Python图像锐化及边缘检测(Roberts、Prewitt、Sobel、Lapllacian、Canny、LOG)

    目录 图像锐化概述 算法方法介绍  代码实现 效果展示 图像锐化 (image sharpening) 是补偿图像的轮廓,增强图像的边缘及灰度跳变的部分,使图像变得清晰,分为空间域处理和频域处理两类。图像锐化是为了突出图像上地物的边缘、轮廓,或某些线性目标要素的特征。这种滤波

    2023年04月17日
    浏览(49)
  • FPGA实战开发-基于DDR的图像缓存(下)

    文章目录 概要 整体架构流程 技术名词解释 技术细节 小结 例如: 基于米联科的学习资料,分享和学习同步,欢迎大家一起探讨。 提示:这里可以添加技术整体架构 例如:       image_data_gen产生了测试图片,之后进入过W0 FIFO进行视频缓存。每次缓存1024个像素,就往通过F

    2024年02月17日
    浏览(41)
  • FPGA实战开发-基于的ddr图像缓存设计(上)

    目录 概要 整体架构流程 技术名词解释 技术细节 ​编辑 小结 提示:这里可以添加技术概要 本文主要基于DDR的图像缓存设计。 提示:这里可以添加技术整体架构 先用图像产生模块产生一个1080P60Hz的测试图像,然后经过FDMA进入ddr3,缓存3帧后在读出来。然后在经过HDMI显示。

    2024年02月08日
    浏览(62)
  • FPGA高端图像处理开发板:鲲叔1号,寄托了未来的一块开发板

    在CSDN写博客传播FPGA开发经验已经一年多了,帮助了不少人,也得罪了不少人,有的人用我的代码赢得了某些比赛、得到了心仪的offer,也有的人天天骂我,anyway,哪怕只要还能帮助一个即将毕业的学生找到工作,哪怕只要还能帮助一个工程师解决项目开发的燃眉之急,我做的

    2024年02月21日
    浏览(37)
  • 基于Verilog 语言开发的FPGA密码锁工程

    基于Verilog 语言开发的FPGA密码锁工程。 通过矩阵键盘输入按键值。 输入12修改密码,13清除密码,可以修改原来默认的密码,修改时首先要输入当前密码进行验证,正确后才能更新当前密码,否则修改不成功。 修改结束后按键15,确认修改成功。 也直接使用默认密码作为最终

    2024年02月10日
    浏览(59)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包