【YOLOv8改进】 YOLOv8 更换骨干网络之GhostNetV2 长距离注意力机制增强廉价操作,构建更强端侧轻量型骨干 (论文笔记+引入代码)

这篇具有很好参考价值的文章主要介绍了【YOLOv8改进】 YOLOv8 更换骨干网络之GhostNetV2 长距离注意力机制增强廉价操作,构建更强端侧轻量型骨干 (论文笔记+引入代码)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

介绍

yolov8目标检测的ghostconv,YOLO目标检测创新改进与实战案例精讲,YOLO,网络,论文阅读,目标检测

摘要

轻量级卷积神经网络(CNNs)专为移动设备上的应用而设计,具有更快的推理速度。卷积操作只能捕获窗口区域内的局部信息,这限制了性能的进一步提升。将自注意力引入到卷积中可以很好地捕获全局信息,但这将大大增加实际速度的负担。在本文中,我们提出了一种硬件友好的注意力机制(称为DFC注意力),然后为移动应用呈现了一个新的GhostNetV2架构。所提出的DFC注意力基于全连接层构建,不仅可以在常见硬件上快速执行,还能捕获长距离像素之间的依赖关系。我们进一步重新审视了之前GhostNet中的表达性瓶颈,并提出通过DFC注意力增强通过廉价操作产生的扩展特征,以便GhostNetV2块可以同时聚合局部和长距离信息。广泛的实验展示了GhostNetV2相较于现有架构的优越性。例如,在ImageNet上,它以167M FLOPs实现了75.3%的top-1准确率,显著超过了具有类似计算成本的GhostNetV1(74.5%)。源代码将在 https://github.com/huawei-noah/Efficient-AI-Backbones/tree/master/ghostnetv2_pytorch 和 https://gitee.com/mindspore/models/tree/master/research/cv/ghostnetv2 上提供。

创新点

GhostNetV2的创新点总结如下:

  1. 增强的特征表达能力&文章来源地址https://www.toymoban.com/news/detail-842761.html

到了这里,关于【YOLOv8改进】 YOLOv8 更换骨干网络之GhostNetV2 长距离注意力机制增强廉价操作,构建更强端侧轻量型骨干 (论文笔记+引入代码)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【YOLOv8改进】 YOLOv8 更换骨干网络之 GhostNet :通过低成本操作获得更多特征 (论文笔记+引入代码).md

    在嵌入式设备上部署卷积神经网络(CNNs)由于有限的内存和计算资源而变得困难。特征图中的冗余是那些成功的CNNs的一个重要特性,但在神经架构设计中很少被研究。本文提出了一种新颖的Ghost模块,用于通过低成本操作生成更多的特征图。基于一组内在特征图,我们应用一

    2024年03月20日
    浏览(57)
  • YOLOv8改进 | 主干篇 | 华为移动端模型Ghostnetv1改进特征提取网络

    本文给大家带来的改进机制是华为移动端模型 Ghostnetv1 ,华为的 GhostNet 是一种轻量级卷积神经网络,旨在在计算资源有限的嵌入式设备上实现高性能的图像分类。 GhostNet的关键思想 在于通过引入Ghost模块,以较低的计算成本增加了特征图的数量,从而提高了模型的性能。这种

    2024年01月19日
    浏览(55)
  • YOLOv8 更换骨干网络之 MobileNetV3

    论文地址:https://arxiv.org/abs/1905.02244 代码地址:https://github.com/xiaolai-sqlai/mobilenetv3 我们展示了基于互补搜索技术和新颖架构设计相结合的下一代 MobileNets。MobileNetV3通过结合硬件感知网络架构搜索(NAS)和 NetAdapt算法对移动设计如何协同工作,利用互补的方法来提高移动端CP

    2023年04月21日
    浏览(44)
  • 改进YOLO系列 | YOLOv5 更换骨干网络之 ConvNeXt

    🍀2023/6/30 更新源代码 ,并追加结构对应的超参数文件 论文地址:https://arxiv.org/pdf/2201.03545.pdf 代码地址:https://github.com/facebookresearch/ConvNeXt 视觉识别的“Roaring 20年代”始于视觉变换器(ViTs)的引入,它很快取代了ConvNets,成为最先进的图像分类模型。另一方面,普通ViTs在应

    2024年02月04日
    浏览(50)
  • 主干网络篇 | YOLOv8更换主干网络之VanillaNet | 华为方舟实验室提出全新轻量级骨干架构

    前言: Hello大家好,我是小哥谈。 华为方舟实验室所提出的VanillaNet架构克服了固有复杂性的挑战,使其成为资源受限环境的理想选择。其易于理解和高度简化的架构为高效部署开辟了新的可能性。广泛的实验表明,VanillaNet提供的性能与著名的深度神经网络和vision transformer

    2024年04月14日
    浏览(72)
  • 【RT-DETR有效改进】华为 | GhostnetV2移动端的特征提取网络效果完爆MobileNet系列

    👑 欢迎大家订阅本专栏,一起学习RT-DETR 👑  本文给大家带来的改进机制是华为移动端模型GhostNetV2,华为 GhostNetV2 是为 移动应用设计的轻量级卷积神经网络(CNN) ,旨在提供更快的推理速度,其引入了一种硬件友好的注意力机制,称为DFC注意力。这个注意力机制是基于全

    2024年01月22日
    浏览(51)
  • YOLOv8芒果独家首发 | 改进新主干:改进版目标检测新范式骨干PPHGNetv2,百度出品,提升YOLOv8检测能力

    💡 本篇内容 :YOLOv8改进新主干:目标检测新范式骨干PPHGNetv2改进版,百度出品,提升YOLOv8检测能力 💡🚀🚀🚀本博客 改进源代码改进 适用于 YOLOv8 按步骤操作运行改进后的代码即可 💡本文提出改进 原创 方式:二次创新,YOLOv8专属,充分结合YOLOv8和 PPHGNetv2网络 本改进结

    2024年02月06日
    浏览(47)
  • YOLOV8改进:更换为MPDIOU,实现有效涨点

    1.该文章属于YOLOV5/YOLOV7/YOLOV8改进专栏,包含大量的改进方式,主要以2023年的最新文章和2022年的文章提出改进方式。 2.提供更加详细的改进方法,如将注意力机制添加到网络的不同位置,便于做实验,也可以当做论文的创新点。 2.涨点效果:更换为MPDIOU,实现有效涨点! 目录

    2024年02月10日
    浏览(57)
  • YOLOv5/v7 更换骨干网络之 SwinTransformer

    提供 YOLOv5 / YOLOv7 / YOLOv7-tiny 模型 YAML 文件 论文地址:https://arxiv.org/pdf/2103.14030.pdf 代码地址:https://github.com/microsoft/Swin-Transformer 本文介绍了一种新的视觉 Transformer ,称为 Swin Transformer ,它可以作为计算机视觉通用的骨干网络。从语言到视觉的转换中,适应 Transformer 所面临的

    2023年04月14日
    浏览(56)
  • YOLOv8改进轻量级PP-LCNet主干系列:最新使用超强悍CPU级骨干网络PP-LCNet,在CPU上让模型起飞,速度比MobileNetV3+快3倍,又轻又快

    💡本篇文章 基于 YOLOv8 芒果改进YOLO系列: YOLOv8改进轻量级主干系列:最新使用超强悍CPU级骨干网络PP-LCNet,在CPU上让模型起飞,速度比MobileNetV3+快3倍、打造全新YOLOv8检测器 。 🚀🚀🚀内含改进源代码,按步骤操作运行改进后的代码即可 参数量和计算量均下降 重点 :🔥🔥

    2024年02月06日
    浏览(55)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包