介绍
摘要
轻量级卷积神经网络(CNNs)专为移动设备上的应用而设计,具有更快的推理速度。卷积操作只能捕获窗口区域内的局部信息,这限制了性能的进一步提升。将自注意力引入到卷积中可以很好地捕获全局信息,但这将大大增加实际速度的负担。在本文中,我们提出了一种硬件友好的注意力机制(称为DFC注意力),然后为移动应用呈现了一个新的GhostNetV2架构。所提出的DFC注意力基于全连接层构建,不仅可以在常见硬件上快速执行,还能捕获长距离像素之间的依赖关系。我们进一步重新审视了之前GhostNet中的表达性瓶颈,并提出通过DFC注意力增强通过廉价操作产生的扩展特征,以便GhostNetV2块可以同时聚合局部和长距离信息。广泛的实验展示了GhostNetV2相较于现有架构的优越性。例如,在ImageNet上,它以167M FLOPs实现了75.3%的top-1准确率,显著超过了具有类似计算成本的GhostNetV1(74.5%)。源代码将在 https://github.com/huawei-noah/Efficient-AI-Backbones/tree/master/ghostnetv2_pytorch 和 https://gitee.com/mindspore/models/tree/master/research/cv/ghostnetv2 上提供。
创新点
GhostNetV2的创新点总结如下:文章来源:https://www.toymoban.com/news/detail-842761.html
-
增强的特征表达能力&文章来源地址https://www.toymoban.com/news/detail-842761.html
到了这里,关于【YOLOv8改进】 YOLOv8 更换骨干网络之GhostNetV2 长距离注意力机制增强廉价操作,构建更强端侧轻量型骨干 (论文笔记+引入代码)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!