用云服务器构建gpt和stable-diffusion大模型

这篇具有很好参考价值的文章主要介绍了用云服务器构建gpt和stable-diffusion大模型。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

参考: DataWhale学习手册链接

一、前置知识

采用云服务器创建项目时,选择平台预先下载的镜像、数据和模型往往可以事半功倍。

  • 镜像是一个包含了操作系统、软件、库以及其他运行时需要的所有内容的快照。使用镜像可以快速部署具有相同环境配置的虚拟机实例或容器,无需手动配置每个环境。这样能够确保在不同计算环境中实现环境的一致性,并方便应用程序的部署和迁移。
  • 预训练模型则是准备好预训练好的大模型,可以直接下载,可以使用驱动云直接下载好的。或者麻烦点,使用git lfs clone https://huggingface.co/THUDM/chatglm3-6b下载模型权重,模型权重数据太大,克隆时间太长。
  • 数据,在创建项目时选择数据,可以将需要的数据集直接加载到云端环境中,方便模型训练和验证。

二、用云端属于自己的聊天chatGLM3

step1、项目配置

  • 采用 趋动云 云端配置,环境采用 Pytorch2.0.1、python3.9、cuda11.7 的镜像,预训练模型选择 葱姜蒜上传的这个ChtaGLM3-6B模型

  • 资源配置采用拥有24G显存的 B1.large ,最好设置一个最长运行时间,以免忘关环境,导致资源浪费。

step2、环境配置

成功配置好项目基本资源后,就可以进入JupyterLab开发环境了。现在需要在终端进一步配置环境,通过我们选择的模型资源中的加载的文件,我们首先要设置镜像源、克隆ChatGLM项目。

1、前置知识
  • apt-get 是一个在 Debian 及其衍生发行版(比如 Ubuntu)中用来管理软件包的命令行工具。它的主要作用包括:

    1. 安装软件包:使用 apt-get install 命令可以安装指定的软件包,系统会自动解决依赖关系并下载安装所需的软件包。
    2. 升级软件包:通过 apt-get upgrade 命令可以升级系统中已安装的软件包到最新版本。系统会检查可用的更新并进行相应的升级操作。
    3. 移除软件包:使用 apt-get remove 命令可以移除系统中已安装的软件包,同时也会移除其相关的配置文件。
    4. 清理无用的软件包:通过 apt-get autoremove 命令可以清理掉系统中不再需要的无用软件包。这些软件包通常是因为其他软件的升级或移除而留下来的。
    5. 更新软件包列表:使用 apt-get update 命令可以更新本地软件包列表,以获取最新的软件包信息,包括可用的更新和安全修复程序。
    6. 升级发行版:通过 apt-get dist-upgrade 命令可以升级整个发行版,包括进行系统核心的升级。

    apt-get 是一个强大的软件包管理工具,可以帮助用户方便地安装、升级、移除软件包,并保持系统中的软件包信息是最新的。

  • git config --global url."https://gitclone.com/".insteadOf https://的作用是将 Git 在使用 https:// 方式克隆(clone)远程仓库时,自动将 URL 中的 https:// 替换为 https://gitclone.com/

  • pip config set global.index-url https://pypi.virtaicloud.com/repository/pypi/simple设置全局的 PyPI 镜像源https://pypi.virtaicloud.com/repository/pypi/simple。PyPI(Python Package Index)是 Python 社区中最大的软件包仓库,开发者可以通过它来获取和安装各种 Python 包。默认情况下,pip 会从官方的 PyPI 仓库中获取包信息和下载包。

  • python3 -m pip install --upgrade pip 的作用是使用 Python 3 自带的 pip 模块来升级当前系统中的 pip 工具到最新版本。

    python3 -m pip:使用 Python 3 自带的 pip 模块来执行 pip 相关操作。

    install --upgrade pip:安装最新版本的 pip 工具,而 --upgrade 标志表示即使已经安装了 pip,也要将其升级到最新版本。

  • pip install -r <requirements_file> 中的 -r 选项表示从指定的 requirements 文件中安装所有列出的 Python 包。

  • pip install peft:为解决大模型微调的一些问题,huggface开源的一个高效微调大模型-PEFT库(它提供了最新的参数高效微调技术,并且可以与Transformers和Accelerate进行无缝集成)-里面实现的方法,主要是针对transformer架构的大模型进行微调,当然repo中有对diffusion模型进行微调的案例

2、环境配置流程
  • 升级apt,安装unzip

    apt-get update && apt-get install unzip
    
  • 设置镜像源,升级pip

    git config --global url."https://gitclone.com/".insteadOf https://
    pip config set global.index-url https://pypi.virtaicloud.com/repository/pypi/simple
    python3 -m pip install --upgrade pip
    
  • 克隆chatGLM3模型的微调模型code

    git clone https://github.com/THUDM/ChatGLM3.git
    
  • 进入项目目录

    cd ChatGLM3
    
  • 安装项目依赖与peft,即模型代码运行所需要的必备库

    由于最开始选择的镜像中包含torch,为避免重复安装,可以先把requirements.txt中的torch删掉

    pip install -r requirements.txt
    pip install peft
    

step3、创建镜像

由于,我们采用的镜像是系统预制的一些镜像,该镜像不具备保存功能,但是为了防止下次加载还得重新配置环境,可以当前环境制作成镜像,封装发布。

1、前置知识

Dockerfile 是用来构建 Docker 镜像的文本文件。通过 Dockerfile,您可以定义镜像中包含的文件、环境、依赖关系等信息。在 Dockerfile 中,您可以指定一系列指令,Docker 引擎将根据这些指令自动化地构建出一个完整的镜像。

一个典型的 Dockerfile 包含了一系列指令,如 FROM、RUN、COPY、CMD 等,用于描述镜像的构建过程。以下是一些常用的 Dockerfile 指令:

  • FROM:指定基础镜像,即构建新镜像所基于的基础镜像。
  • RUN:在镜像内执行命令,用于安装软件包、下载文件等操作。
  • COPY:将文件从主机复制到镜像内的指定路径。
  • CMD:设置容器启动时执行的默认命令或程序。

通过编写 Dockerfile,可以定义容器的环境、运行时配置以及应用程序所需的依赖项,**使得容器的部署和管理变得更加方便和可重复。**一旦编写好 Dockerfile,可以使用 Docker 命令构建镜像,并基于该镜像创建并运行容器。

2、创建镜像流程
  • 点击右上角将当前环境制作为镜像

    用云服务器构建gpt和stable-diffusion大模型,服务器,gpt,stable diffusion

  • 填写镜像名称,构建镜像,填写自定义镜像名称后,在Dockerfile中选择智能生成或者直接填写下边内容,以之前选择的基础镜像,创建镜像。
    用云服务器构建gpt和stable-diffusion大模型,服务器,gpt,stable diffusion

    RUN apt-get update && apt-get install unzip
    
    RUN git config --global url."https://gitclone.com/".insteadOf https://
    RUN pip config set global.index-url https://pypi.virtaicloud.com/repository/pypi/simple
    RUN python3 -m pip install --upgrade pip
    
    RUN pip install  accelerate==0.27.2  \ 
     aiofiles==23.2.1  \ 
     altair==5.2.0  \ 
     annotated-types==0.6.0  \ 
     arxiv==2.1.0  \ 
     blinker==1.7.0  \ 
     colorama==0.4.6  \ 
     cpm-kernels==1.0.11  \ 
     dataclasses-json==0.6.4  \ 
     distro==1.9.0  \ 
     fastapi==0.110.0  \ 
     feedparser==6.0.10  \ 
     ffmpy==0.3.2  \ 
     gitdb==4.0.11  \ 
     GitPython==3.1.42  \ 
     gradio==4.21.0  \ 
     gradio_client==0.12.0  \ 
     greenlet==3.0.3  \ 
     h11==0.14.0  \ 
     httpcore==1.0.4  \ 
     httpx==0.27.0  \ 
     huggingface-hub==0.21.4  \ 
     jsonpatch==1.33  \ 
     jupyter_client==8.6.0  \ 
     langchain==0.1.11  \ 
     langchain-community==0.0.27  \ 
     langchain-core==0.1.30  \ 
     langchain-text-splitters==0.0.1  \ 
     langchainhub==0.1.15  \ 
     langsmith==0.1.23  \ 
     latex2mathml==3.77.0  \ 
     loguru==0.7.2  \ 
     markdown-it-py==3.0.0  \ 
     marshmallow==3.21.1  \ 
     mdtex2html==1.3.0  \ 
     mdurl==0.1.2  \ 
     openai==1.13.3  \ 
     orjson==3.9.15  \ 
     packaging==23.2  \ 
     peft==0.9.0  \ 
     protobuf==4.25.3  \ 
     pydantic==2.6.3  \ 
     pydantic_core==2.16.3  \ 
     pydeck==0.8.1b0  \ 
     pydub==0.25.1  \ 
     PyJWT==2.8.0  \ 
     python-multipart==0.0.9  \ 
     regex==2023.12.25  \ 
     requests==2.31.0  \ 
     rich==13.7.1  \ 
     ruff==0.3.2  \ 
     safetensors==0.4.2  \ 
     semantic-version==2.10.0  \ 
     sentence-transformers==2.5.1  \ 
     sentencepiece==0.2.0  \ 
     sgmllib3k==1.0.0  \ 
     shellingham==1.5.4  \ 
     smmap==5.0.1  \ 
     SQLAlchemy==2.0.28  \ 
     sse-starlette==2.0.0  \ 
     starlette==0.36.3  \ 
     streamlit==1.32.0  \ 
     tenacity==8.2.3  \ 
     tiktoken==0.6.0  \ 
     timm==0.9.16  \ 
     tokenizers==0.15.2  \ 
     toml==0.10.2  \ 
     tomlkit==0.12.0  \ 
     transformers==4.38.2  \ 
     typer==0.9.0  \ 
     typing_extensions==4.10.0  \ 
     urllib3==2.2.1  \ 
     uvicorn==0.28.0  \ 
     watchdog==4.0.0  \ 
     websockets==11.0.3  \ 
     zhipuai==2.0.1
    
  • 等待镜像构建
    用云服务器构建gpt和stable-diffusion大模型,服务器,gpt,stable diffusion

  • 构建成功后,在开发环境实例中修改镜像

    在构建的项目中,点击右边栏的 开发 ,点击 修改挂载镜像 ,在 我的 里选择刚才创建的镜像。

    用云服务器构建gpt和stable-diffusion大模型,服务器,gpt,stable diffusion

这样子之后就不用重复配置环境了。

step4、通过 Gradio 创建ChatGLM交互界面

1、前置知识

Gradio 是一个用于快速构建机器学习模型部署的开源库,它可以帮助快速创建简单而强大的交互式界面,用于展示和测试机器学习模型。通过 Gradio,可以轻松地将训练好的模型转化为可视化的 Web 应用程序,无需深度的前端知识。Gradio 提供了一个简单易用的 API,支持各种机器学习框架(如 TensorFlow、PyTorch 等),使得将模型部署为交互式应用变得非常容易。可以定义输入和输出的界面元素,包括文本框、滑块、图像上传等,以便用户与模型进行交互。

2、创建ChatGLM交互界面的流程
  • 修改模型目录

    双击basic_demo 编辑web_demo``_gradio``.py,将加载模型的路径修改为:/gemini/pretrain,如下图所示~

    用云服务器构建gpt和stable-diffusion大模型,服务器,gpt,stable diffusion

  • 2、修改启动代码

    接下来还需要修改一段启动代码,将滚动条拉到最后一行,启动代码修改为如下~

    demo.queue().launch(share=False, server_name="0.0.0.0",server_port=7000)
    

用云服务器构建gpt和stable-diffusion大模型,服务器,gpt,stable diffusion

  • 3、添加外部端口映射

    在界面的右边添加外部端口:7000
    用云服务器构建gpt和stable-diffusion大模型,服务器,gpt,stable diffusion

  • 4、运行gradio界面

    点击左上选项卡,重新返回终端,运行web_demo_gradio.py

    cd basic_demo
    python web_demo_gradio.py
    
  • 5、访问gradio页面

    加载完毕之后,复制外部访问的连接,到浏览器打打开

    用云服务器构建gpt和stable-diffusion大模型,服务器,gpt,stable diffusion

    可以看到,Gradio界面并不稳定,回复中夹杂指令字符<|im_end|><|im_start|>

step5、通过 streamlit 创建ChatGLM交互界面

1、前置知识

Streamlit 是一个用于快速构建数据应用程序的开源 Python 库。它可以帮助数据科学家和开发人员轻松地创建交互式的数据分析和展示界面,而无需深度的前端开发经验。通过 Streamlit,可以使用简单的 Python 脚本来创建数据应用程序,包括数据可视化、机器学习模型展示、文本分析等。Streamlit 提供了各种易于使用的组件,可以让用户快速构建交互式界面,包括图表、表格、滑块、文本框等。同时,Streamlit 还支持实时更新,当用户与应用程序交互时,界面会即时响应并更新展示结果。

2、创建ChatGLM交互界面流程
  • 1、修改模型目录

    将 basic_demo 文件夹中的 web_demo_streamlit.py 的模型加载路径改为 /gemini/pretrain

  • 2、运行streamlit界面

    在终端输入以下指令,运行web_demo_stream.py并指定7000端口,这样就不用再次添加外部端口映射啦~

streamlit run web_demo_streamlit.py --server.port 7000
  • 3、访问streamlit界面

复制外部访问地址到浏览器打开,之后模型才会开始加载。(不复制在浏览器打开是不会加载的!)
用云服务器构建gpt和stable-diffusion大模型,服务器,gpt,stable diffusion

  • 4、出现以上界面,等待加载,加载结束后工作台后端画面如下。可以在输入框提问。

    用云服务器构建gpt和stable-diffusion大模型,服务器,gpt,stable diffusion

三、用云端属于自己的stable-diffusion

step1、项目配置

  • 采用 趋动云 云端配置,环境采用 趋动云小助手AUTOMATIC1111/stable-diffusion-webui 镜像,数据选择 stable-diffusion-models 数据集

  • 资源配置采用拥有24G显存的 B1.large ,最好设置一个最长运行时间,以免忘关环境,导致资源浪费。

step2、环境配置

1、前置知识
  • tar 命令是一个在 Unix 和类Unix操作系统中用来打包和解压文件的命令,其名称源自 “tape archive” 的缩写。

    1. 创建归档文件(打包)

      tar cf archive.tar file1 file2 ...  # 创建名为 archive.tar 的归档文件,包含指定的文件
      tar czf archive.tar.gz directory/    # 创建名为 archive.tar.gz 的归档文件,并使用 gzip 进行压缩
      
      • c: 创建一个新的归档文件

      • f: 指定归档文件的名称

      • z: 使用 gzip 进行压缩

      • v: 显示详细的操作过程(可选)

      • j: 使用 bzip2 进行压缩

    2. 提取归档文件(解压)

      tar xf archive.tar  # 从 archive.tar 中提取文件
      tar xzf archive.tar.gz  # 解压缩并从 archive.tar.gz 中提取文件
      
      • x: 提取文件

      • f: 指定要提取的归档文件

      • z: 使用 gzip 进行解压

      • v: 显示详细的操作过程(可选)

      • j: 使用 bzip2 进行解压

  • chmod 是一个在 Unix 和类Unix操作系统中用来修改文件或目录权限的命令。其名称源自 “change mode” 的缩写。

    语法:

    chmod [选项] 模式 文件或目录
    

    常用选项:

    • -R:递归地应用权限更改到指定的文件或目录,包括子目录中的所有文件和目录。
    • -v:显示详细的操作过程。
    • -c:仅在发生更改时显示详细的操作过程。

    模式:

    • 符号表示法:使用字符 u(所有者)、g(所属组)、o(其他用户)和 a(所有用户)来表示不同的用户类型;

    • 加号(+)表示添加权限,减号(-)表示移除权限,等号(=)表示设定权限为指定值;

    • r(读取)、w(写入)、x(执行)分别表示读取、写入和执行权限。

  • python launch.py --deepdanbooru --share --xformers --listen 是一个运行 Python 脚本的命令

    • --deepdanbooru:这是一个选项标志,可能是脚本中用于启用 DeepDanbooru 模块的功能。它可能是指在运行脚本时开启 DeepDanbooru 相关的功能或配置。
    • --share:这也是一个选项标志,可能表示在运行脚本时启用分享功能。具体功能和实现方式需要根据脚本的代码和上下文来确定。
    • --xformers:这是一个选项标志,可能指示脚本在运行时使用 Xformers 模块。具体用途需要查看脚本的实现代码来确认。
    • --listen:这是一个选项标志,可能指示脚本在运行时监听某个端口或地址,以便接收和处理传入的网络连接或数据。
2、环境配置流程
  • 解压代码及模型

    将 “stable-diffusion-webui.tar” 文件解压缩到 “/gemini/code/” 目录中。

    tar xf /gemini/data-1/stable-diffusion-webui.tar -C /gemini/code/ 
    
  • 系统给frpc_linux_amd64_v0.2文件添加可执行权限。

    chmod +x /root/miniconda3/lib/python3.10/site-packages/gradio/frpc_linux_amd64_v0.2
    
  • 将模型文件从/gemini/data-1/v1-5-pruned-emaonly.safetensors拷贝到/gemini/code/stable-diffusion-webui/项目目录下。

    cp /gemini/data-1/v1-5-pruned-emaonly.safetensors /gemini/code/stable-diffusion-webui/
    
  • 更新系统httpx依赖

    pip install httpx==0.24.1
    
  • 进入到运行文件目录下

    cd /gemini/code/stable-diffusion-webui 
    
  • 运行项目

    运行Python 脚本,并且通过选项参数指定了脚本要启用的功能、模块或配置。

    python launch.py --deepdanbooru --share --xformers --listen
    

    当命令窗口出现如下两个网址时表示部署成功,可以复制右侧的外部访问网址访问webui

    用云服务器构建gpt和stable-diffusion大模型,服务器,gpt,stable diffusion

    访问这个网址就可以直接使用啦
    用云服务器构建gpt和stable-diffusion大模型,服务器,gpt,stable diffusion文章来源地址https://www.toymoban.com/news/detail-843077.html

到了这里,关于用云服务器构建gpt和stable-diffusion大模型的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • rust学习-构建服务器

    服务器会依次处理每一个请求,在完成第一个连接的处理之前不会处理第二个连接 404.html thread::spawn,期望获取一些一旦创建线程就应该执行的代码 但是对于线程池不适用,线程池是当在需要时才执行代码执行 (1)定义 Worker 结构体存放 id 和 JoinHandle() (2)修改 ThreadPool 存

    2024年02月15日
    浏览(38)
  • 用Owncast构建直播服务器

    什么是 Owncast ? Owncast 是一个开源的自托管解决方案,具有高度可定制性和灵活性,可以在几分钟内部署在本地或云端,是独立于任何供应商或服务提供商的广播视频、课程、演示文稿、游戏、谈话或任何其他内容的解决方案。 Owncast 和老苏在 2020 年前写过 LiveGo 是同类应用

    2024年02月01日
    浏览(42)
  • Java 构建websocket客户端,构建wss客户端,使用wss连接,并发送数据到服务器端,接收服务器端消息

    Java 构建websocket客户端,构建wss客户端,使用wss连接,并发送数据到服务器端,接收服务器端消息 回调函数处理

    2024年02月13日
    浏览(61)
  • 0基础云服务器部署Stable Diffusion

    心动了没有!!! 你还没有安装好stable-diffusion吗?在这里,你只要有一个可以联网的电脑就可以使用它。 有没有小伙伴被自己电脑的配置劝退的呢?或者各种报错不知道怎么解决?去网站上搜索各种报错的解决方案。 下面是教程 打开这个链接并登录,去看下自己有没有新

    2023年04月11日
    浏览(68)
  • 云服务器部署stable diffusion webui

    一些过程+亿些踩坑记录 都是因为自己显卡太差,正好还有剩下来的深度学习平台租的服务器,单纯用的话没有必要这么麻烦,但训练对显存有要求而且我也没打算拿着小笔记本电脑跑到天荒地老。 目前时间是2022.11.12,以后和以前的版本可能会不适用。 创建环境(linux) 一

    2024年01月18日
    浏览(39)
  • ESP32构建简单WebServer服务器

    WebServer 服务器 此案例中,我们将创建一个最简单的 webserver 服务器 案例实现:ESP32 通过 SPIFFS 上传网页文件并保存,之后手机开启热点,ESP32 连接到该热点;与手机处于同一热点下的任何一个设备(下面用电脑演示)都可以通过 ESP32 反馈的内网地址访问其构建的网页! ESP

    2024年02月11日
    浏览(46)
  • 如何构建一台机器学习服务器

    系统安装这里就不再赘述,推荐使用ventory作为PE盘,来安装系统,这样方便快捷,可同时包含多个镜像,无需重复制作,需要注意的是在安装系统的时候需要手动进行分区,我们可以看一下我的分区结果: 在安装系统之后请先确认系统版本等内容和预想一致: 使用命令: 结

    2024年04月12日
    浏览(56)
  • Stable Diffusion云服务器部署完整版教程

    2023年07月04日 22:30 3607浏览 · 18喜欢 · 22评论 薯片_AI 粉丝: 1513 文章: 1 设置分组 取消关注 已关注         文本旨在将stable diffusion部署在云服务器上,利用云服务器的优势让我们更好的体验AI绘图。 本文的教程是作者一步步实践所总结出来的,完整的按照作者的步骤执

    2024年02月06日
    浏览(42)
  • 如何在阿里云ECS服务器中搭建gpt-index

    要在阿里云ECS服务器上搭建gpt-index,可以按照以下步骤进行: 创建ECS实例:登录阿里云控制台,选择ECS服务,点击创建实例,选择对应的配置和操作系统,完成创建。 远程连接ECS服务器:使用SSH工具(如PuTTY)远程连接至ECS实例的公网IP地址,登录服务器。 安装依赖环境:在

    2024年01月21日
    浏览(43)
  • 最新开源版本GPT3.5小程序源码 无需服务器搭建

    简介: 最新开源版本GPT3.5小程序源码 无需服务器搭建 搭建前说明:此教程使用阿里云函数搭建,搜阿里云函数,开通,领取100万次调用。 此教程只是函数使用阿里云,数据库什么的不用动,如果你之前有版本上线,直接复制那个版本的数据库账号密码填写到新搭建的阿里云

    2024年02月13日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包