1 wpa_supplicant与用户态程序wpa_cli的交互过程
1.1 交互接口类型
wpa_supplicant与用户态程序交互的主要接口包括以下几种:
- 1)命令行界面:通过命令行工具 wpa_cli 可以与 wpa_supplicant 进行交互。wpa_cli 允许用户执行各种 wpa_supplicant 操作,如配置网络、扫描网络、断开连接等。用户可以通过命令行输入命令,然后 wpa_cli 会将命令传递给 wpa_supplicant,并返回执行结果。
- 2)控制接口文件:wpa_supplicant 会创建一个控制接口文件,通常位于 /var/run/wpa_supplicant/ 目录下,以与外部程序进行通信。通过控制接口文件,外部程序可以向 wpa_supplicant 发送命令,以配置和管理无线网络连接。这通常涉及到读写控制接口文件中的数据,以执行各种操作。
- 3)D-Bus 接口:wpa_supplicant 也提供了一个 D-Bus 接口,允许外部程序使用 D-Bus 协议与其通信。通过 D-Bus 接口,外部程序可以查询和配置 wpa_supplicant 的状态、网络配置等信息。D-Bus 是一种通用的进程间通信机制,在许多Linux系统上都受支持。
- 4)自定义接口:有些外部程序可能会使用 wpa_supplicant 提供的自定义接口,通过编程方式与其交互。
用户态程序和wpa_supplicant两个进程之间通信的方式一般为unix socket
wpa_cli就是一个用户态程序,本文以wpa_cli为代表分析wpa_supplicant与用户态之间的交互
1.2 交互命令和日志
首先,执行wpa_supplicant命令
sudo ./wpa_supplicant -i wlan0 -D nl80211 -c /etc/wpa_supplicant/wpa_supplicant.conf
该命令会调用wpa_supplicant/main.c文件中的main()主函数
然后,执行wpa_cli命令
sudo ./wpa_cli -i wlan0 scan
该命令会调用wpa_supplicant/wpa_cli.c文件中的main()主函数
在wpa_cli端发出扫描命令后,wpa_supplicant端接收到来自wpa_cli的消息,其处理日志如下
wlan0: Control interface command 'SCAN'
wlan0: Setting scan request: 0.000000 sec
wlan0: Starting AP scan for wildcard SSID
WPS: Building WPS IE for Probe Request
WPS: * Version (hardcoded 0x10)
WPS: * Request Type
WPS: * Config Methods (3108)
WPS: * UUID-E
WPS: * Primary Device Type
WPS: * RF Bands (1)
WPS: * Association State
WPS: * Configuration Error (0)
WPS: * Device Password ID (0)
WPS: * Manufacturer
WPS: * Model Name
WPS: * Model Number
WPS: * Device Name
WPS: * Version2 (0x20)
P2P: * P2P IE header
P2P: * Capability dev=25 group=00
P2P: * Listen Channel: Regulatory Class 81 Channel 1
wlan0: Add radio work 'scan'@0x5558d881f330
wlan0: First radio work item in the queue - schedule start immediately
wlan0: Starting radio work 'scan'@0x5558d881f330 after 0.000006 second wait
wlan0: nl80211: scan request
Scan requested (ret=0) - scan timeout 30 seconds
nl80211: Drv Event 33 (NL80211_CMD_TRIGGER_SCAN) received for wlan0
wlan0: nl80211: Scan trigger
wlan0: Event SCAN_STARTED (47) received
wlan0: Own scan request started a scan in 0.000000 seconds
RTM_NEWLINK: ifi_index=4 ifname=wlan0 wext ifi_family=0 ifi_flags=0x11043 ([UP][RUNNING][LOWER_UP])
nl80211: Drv Event 34 (NL80211_CMD_NEW_SCAN_RESULTS) received for wlan0
wlan0: nl80211: New scan results available
nl80211: Scan probed for SSID ''
nl80211: Scan included frequencies: 2412 2417 2422 2427 2432 2437 2442 2447 2452 2457 2462 2467 2472
wlan0: Event SCAN_RESULTS (3) received
wlan0: Scan completed in 11.500205 seconds
nl80211: Received scan results (35 BSSes)
nl80211: Scan results indicate BSS status with 48:2f:6b:2a:07:80 as associated
wlan0: BSS: Start scan result update 3
wlan0: BSS: Add new id 56 BSSID 7c:10:c9:b4:d0:48 SSID 'ASUS_2G' freq 2412
wlan0: BSS: Add new id 57 BSSID 9c:8c:d8:00:a8:e0 SSID 'i-amlogic' freq 2412
wlan0: BSS: Add new id 58 BSSID 9a:00:74:f7:03:b6 SSID 'ChinaNet-UuxC' freq 2412
wlan0: BSS: Add new id 59 BSSID 9c:8c:d8:00:a8:e1 SSID 'sunshine' freq 2412
wlan0: BSS: Add new id 60 BSSID 9c:8c:d8:00:a8:e2 SSID 'galaxy' freq 2412
wlan0: BSS: Add new id 61 BSSID 48:5b:ea:eb:9d:30 SSID 'ChinaNet-DFrr' freq 2432
wlan0: BSS: Add new id 62 BSSID 9c:8c:d8:fe:de:60 SSID 'i-amlogic' freq 2462
BSS: last_scan_res_used=35/64
wlan0: New scan results available (own=1 ext=0)
WPS: AP 48:5b:ea:eb:9d:30 type 0 added
WPS: AP[0] b8:3a:08:17:7f:71 type=0 tries=0 last_attempt=-1 sec ago bssid_ignore=0
WPS: AP[1] 92:a5:af:5e:27:dc type=0 tries=0 last_attempt=-1 sec ago bssid_ignore=0
WPS: AP[2] 58:48:49:0b:b8:63 type=0 tries=0 last_attempt=-1 sec ago bssid_ignore=0
WPS: AP[3] 50:2b:73:c9:11:29 type=0 tries=0 last_attempt=-1 sec ago bssid_ignore=0
WPS: AP[4] 48:5b:ea:eb:a1:2c type=0 tries=0 last_attempt=-1 sec ago bssid_ignore=0
WPS: AP[5] 9c:74:6f:40:a0:40 type=0 tries=0 last_attempt=-1 sec ago bssid_ignore=0
WPS: AP[6] a2:cd:b6:00:c9:b9 type=0 tries=0 last_attempt=-1 sec ago bssid_ignore=0
WPS: AP[7] 14:f5:09:dd:64:f6 type=0 tries=0 last_attempt=-1 sec ago bssid_ignore=0
WPS: AP[8] 48:5b:ea:eb:9d:30 type=0 tries=0 last_attempt=-1 sec ago bssid_ignore=0
wlan0: Radio work 'scan'@0x5558d881f330 done in 11.507001 seconds
wlan0: radio_work_free('scan'@0x5558d881f330): num_active_works --> 0
wlan0: Scan results matching the currently selected network
wlan0: 6: 48:2f:6b:2a:d9:40 freq=2462 level=-56 snr=33 est_throughput=65000
wlan0: 9: 48:2f:6b:2a:07:80 freq=2462 level=-58 snr=31 est_throughput=65000
wlan0: 13: 9c:8c:d8:00:a8:e0 freq=2412 level=-62 snr=27 est_throughput=65000
wlan0: 29: 9c:8c:d8:fe:3f:80 freq=2462 level=-80 snr=9 est_throughput=19500
wlan0: 31: 9c:8c:d8:fe:de:60 freq=2462 level=-88 snr=1 est_throughput=3250
wlan0: Selecting BSS from priority group 0
wlan0: 0: 22:f2:2c:43:84:a1 ssid='' wpa_ie_len=22 rsn_ie_len=20 caps=0x431 level=-54 freq=2462
wlan0: skip - SSID not known
wlan0: 1: 18:f2:2c:43:84:a1 ssid='TV-SE' wpa_ie_len=22 rsn_ie_len=20 caps=0x1431 level=-56 freq=2462
wlan0: skip - SSID mismatch
wlan0: 2: f6:84:8d:21:4c:3b ssid='' wpa_ie_len=22 rsn_ie_len=20 caps=0x411 level=-67 freq=2462
wlan0: skip - SSID not known
wlan0: 3: f4:84:8d:21:4c:3b ssid='QA_2.4G' wpa_ie_len=22 rsn_ie_len=20 caps=0x1411 level=-68 freq=2462
wlan0: skip - SSID mismatch
wlan0: 4: 7c:10:c9:b4:d0:48 ssid='ASUS_2G' wpa_ie_len=0 rsn_ie_len=20 caps=0x1411 level=-69 freq=2412
wlan0: skip - SSID mismatch
wlan0: 5: 48:2f:6b:2a:d9:41 ssid='sunshine' wpa_ie_len=0 rsn_ie_len=20 caps=0x431 level=-56 freq=2462
wlan0: skip - SSID mismatch
wlan0: 6: 48:2f:6b:2a:d9:40 ssid='i-amlogic' wpa_ie_len=0 rsn_ie_len=20 caps=0x431 level=-56 freq=2462
wlan0: selected based on RSN IE
wlan0: selected BSS 48:2f:6b:2a:d9:40 ssid='i-amlogic'
wlan0: Considering within-ESS reassociation
wlan0: Current BSS: 48:2f:6b:2a:07:80 freq=2462 level=-58 snr=31 est_throughput=65000
wlan0: Selected BSS: 48:2f:6b:2a:d9:40 freq=2462 level=-56 snr=33 est_throughput=65000
wlan0: Using signal poll values for the current BSS: level=-59 snr=30 est_throughput=65000
wlan0: Skip roam - Current BSS has good SNR (30 > 25)
wlan0: BSS: Remove id 26 BSSID 6c:b1:58:e4:97:0d SSID 'TP-LINK_970D' due to wpa_bss_flush_by_age
wlan0: BSS: Remove id 31 BSSID b8:3a:08:17:7f:71 SSID 'Moonflower' due to wpa_bss_flush_by_age
wlan0: BSS: Remove id 41 BSSID 48:2f:6b:2a:37:80 SSID 'i-amlogic' due to wpa_bss_flush_by_age
wlan0: BSS: Remove id 48 BSSID 9c:54:c2:fb:66:30 SSID 'cyem' due to wpa_bss_flush_by_age
wlan0: BSS: Remove id 52 BSSID 14:f5:09:dd:64:f6 SSID '' due to wpa_bss_flush_by_age
1.3 wpa_cli的main函数
wpa_cli的main函数依次调用了以下子函数
-
1)调用wpa_cli_open_global_ctrl()函数,用于打开global接口,因为本文执行命令时没有指定-g参数,所以该函数实际没有起到作用
-
2)wpa_cli_open_connection()函数,用于打开socket连接,修改全局变量ctrl_conn的值,传入该函数的参数即为命令中-i指定的waln0
-
3)wpa_request()函数,用于向wpa_supplicant发起请求命令,传入该函数的参数即为全局接口ctrl_conn和命令中的scan字符
//wpa_supplicant\wpa_cli.c
int main(int argc, char *argv[])
{
int c;
int daemonize = 0;
int ret = 0;
if (os_program_init())
return -1;
for (;;) {
c = getopt(argc, argv, "a:Bg:G:hi:p:P:rs:v");
if (c < 0)
break;
switch (c) {
case 'i':
os_free(ctrl_ifname);
ctrl_ifname = os_strdup(optarg);
break;
}
if (eloop_init())
return -1;
if (wpa_cli_open_global_ctrl() < 0)
return -1;
eloop_register_signal_terminate(wpa_cli_terminate, NULL);
if (wpa_cli_open_connection(ctrl_ifname, 0) < 0) {
fprintf(stderr, "Failed to connect to non-global "
"ctrl_ifname: %s error: %s\n",
ctrl_ifname ? ctrl_ifname : "(nil)",
strerror(errno));
return -1;
}
ret = wpa_request(ctrl_conn, argc - optind,&argv[optind]);
os_free(ctrl_ifname);
eloop_destroy();
wpa_cli_cleanup();
return ret;
}
1.3.1 wpa_cli_open_global_ctrl函数
wpa_cli_open_global_ctrl()函数没有输入参数,返回参数为整型变量,返回0表示成功,返回-1表示失败,wpa_cli_open_global_ctrl()函数中继续调用了wpa_ctrl_open2()函数,该函数用于打开wpa_supplicant的控制接口
wpa_ctrl_open2()函数返回一个指向控制接口数据的指针wpa_ctrl,该函数有2个输入参数,如下
-
第1个输入参数为wpa_supplicant控制接口的unix套接字路径,实际传入的是NULL
-
第2个输入参数为客户端(wpa_cli)的unix套接字路径,实际传入的是NULL
函数结构如下:
//wpa_supplicant\wpa_cli.c
static struct wpa_ctrl *ctrl_conn;
static const char *global = NULL;
//wpa_supplicant\wpa_cli.c
static int wpa_cli_open_global_ctrl(void)
{
ctrl_conn = wpa_ctrl_open(global);
return 0;
}
//src\common\wpa_ctrl.c
struct wpa_ctrl * wpa_ctrl_open(const char *ctrl_path)
{
return wpa_ctrl_open2(ctrl_path, NULL);
}
//src\common\wpa_ctrl.c
struct wpa_ctrl * wpa_ctrl_open2(const char *ctrl_path, const char *cli_path)
{
struct wpa_ctrl *ctrl;
if (ctrl_path == NULL)
return NULL;
}
因为在命令中没有指定-g参数,所以全局变量global参数默认为NULL
因此传递给函数wpa_ctrl_open2()的参数ctrl_path为NULL,所以实际上该函数返回为NULL,全局变量ctrl_conn也就被设置为NULL
1.3.2 wpa_cli_open_connection函数
wpa_cli_open_connection()函数用于打开和wpa_supplicant的连接,并在函数中改变全局变量ctrl_conn的值,wpa_cli_open_connection()函数返回1个整型变量,成功返回0,失败返回-1,该函数有2个输入参数,如下
-
传入第1个参数接口名称,实际传入的为命令中-i指定的wlan
-
传入第2个参数为指定连接的方式或附加方式,实际传入0,表示只建立连接,不附加到接口
函数结构如下:
//wpa_supplicant\wpa_cli.c
#ifndef CONFIG_CTRL_IFACE_DIR
#define CONFIG_CTRL_IFACE_DIR "/var/run/wpa_supplicant"
#endif /* CONFIG_CTRL_IFACE_DIR */
static const char *ctrl_iface_dir = CONFIG_CTRL_IFACE_DIR;
static const char *client_socket_dir = NULL;
static struct wpa_ctrl *ctrl_conn;
//wpa_supplicant\wpa_cli.c
static int wpa_cli_open_connection(const char *ifname, int attach)
{
char *cfile = NULL;
int flen, res;
if (ifname == NULL)
return -1;
if (cfile == NULL) {
flen = os_strlen(ctrl_iface_dir) + os_strlen(ifname) + 2;
cfile = os_malloc(flen);
if (cfile == NULL)
return -1;
res = os_snprintf(cfile, flen, "%s/%s", ctrl_iface_dir,
ifname);
if (os_snprintf_error(flen, res)) {
os_free(cfile);
return -1;
}
}
ctrl_conn = wpa_ctrl_open2(cfile, client_socket_dir);
if (ctrl_conn == NULL) {
os_free(cfile);
return -1;
}
os_free(cfile);
return 0;
}
该函数仍然调用了wpa_ctrl_open2()函数,并将返回的控制接口指针wpa_ctrl赋值给全局变量ctrl_conn
ctrl_conn为全局变量,类型为结构体指针wpa_ctrl
//src\common\wpa_ctrl.c
struct wpa_ctrl {
int s;
struct sockaddr_un local;
struct sockaddr_un dest;
};
wpa_ctrl的接口类型实际有3种,分别为udp、unix、pipe,本文只分析unix
wpa_cli_open_connection()函数调用wpa_ctrl_open2()函数时,与之前的wpa_cli_open_global_ctrl()函数不一样
wpa_ctrl_open2()函数返回1个结构体指针ctrl,该函数有2个输入参数,如下
-
传入的第1个参数已经是接口的名称/var/run/wpa_supplicant/wlan0,而不是NULL了
-
传入的第2个参数是client_socket_dir,其初始值依然是NULL
此时的wpa_ctrl_open2函数结构如下:
//src\common\wpa_ctrl.c
#ifndef CONFIG_CTRL_IFACE_CLIENT_DIR
#define CONFIG_CTRL_IFACE_CLIENT_DIR "/tmp"
#endif /* CONFIG_CTRL_IFACE_CLIENT_DIR */
#ifndef CONFIG_CTRL_IFACE_CLIENT_PREFIX
#define CONFIG_CTRL_IFACE_CLIENT_PREFIX "wpa_ctrl_"
#endif /* CONFIG_CTRL_IFACE_CLIENT_PREFIX */
//src\common\wpa_ctrl.c
struct wpa_ctrl * wpa_ctrl_open2(const char *ctrl_path, const char *cli_path)
{
struct wpa_ctrl *ctrl;
static int counter = 0;
int ret;
size_t res;
int tries = 0;
int flags;
if (ctrl_path == NULL)
return NULL;
ctrl = os_zalloc(sizeof(*ctrl));
if (ctrl == NULL)
return NULL;
ctrl->s = socket(PF_UNIX, SOCK_DGRAM, 0);
if (ctrl->s < 0) {
os_free(ctrl);
return NULL;
}
ctrl->local.sun_family = AF_UNIX;
counter++;
try_again:
ret = os_snprintf(ctrl->local.sun_path,
sizeof(ctrl->local.sun_path),
CONFIG_CTRL_IFACE_CLIENT_DIR "/"
CONFIG_CTRL_IFACE_CLIENT_PREFIX "%d-%d",
(int) getpid(), counter);
if (os_snprintf_error(sizeof(ctrl->local.sun_path), ret)) {
close(ctrl->s);
os_free(ctrl);
return NULL;
}
tries++;
if (bind(ctrl->s, (struct sockaddr *) &ctrl->local,
sizeof(ctrl->local)) < 0) {
if (errno == EADDRINUSE && tries < 2) {
unlink(ctrl->local.sun_path);
goto try_again;
}
close(ctrl->s);
os_free(ctrl);
return NULL;
}
ctrl->dest.sun_family = AF_UNIX;
res = os_strlcpy(ctrl->dest.sun_path, ctrl_path, sizeof(ctrl->dest.sun_path));
if (res >= sizeof(ctrl->dest.sun_path)) {
close(ctrl->s);
os_free(ctrl);
return NULL;
}
if (connect(ctrl->s, (struct sockaddr *) &ctrl->dest,
sizeof(ctrl->dest)) < 0) {
close(ctrl->s);
unlink(ctrl->local.sun_path);
os_free(ctrl);
return NULL;
}
flags = fcntl(ctrl->s, F_GETFL);
if (flags >= 0) {
flags |= O_NONBLOCK;
if (fcntl(ctrl->s, F_SETFL, flags) < 0) {
perror("fcntl(ctrl->s, O_NONBLOCK)");
}
}
return ctrl;
}
对该函数说明如下:
-
调用socket()为控制接口创建套接字ctrl->s,地址族为PF_UNIX,表示本地unix域套接字,类型为SOCK_DGRAM,表示无连接通信,协议为0,表示自动选择
-
创建本地套接字的地址族ctrl->local.sun_family为AF_UNIX
-
创建本地套接字的地址,例如创建路径为/tmp/wpa_ctrl_13152-1,其命名方式为/tmp/wpa_ctrl_进程pid-尝试次数
-
调用bind()将创建的套接字与本地地址绑定
-
创建目标套接字的地址族ctrl->dest.sun_family为AF_UNIX
-
创建目标套接字的地址,例如创建路径为/var/run/wpa_supplicant/wlan0,其命名方式为/var/run/wpa_supplicant/接口名称
-
调用connect()将本地socket与目标地址连接
-
通过一系列socket函数实现wpa_cli与wpa_supplicant进行通信,如果出错则会调用close()关闭socket连接
-
最后通过fcntl()获取套接字ctrl->s的标志位,并将套接字设置为非阻塞模式,以避免在目标程序意外终止时导致程序永远阻塞
整个过程中设置了控制接口的ctrl->s、ctrl->local、ctrl→dest这3个成员的值
//src\common\wpa_ctrl.c
struct wpa_ctrl {
int s; //文件描述符
struct sockaddr_un local; //本地UNIX域套接字的地址信息
struct sockaddr_un dest; //目标UNIX域套接字的地址信息
};
相关定义如下
//winsock.h
#define AF_UNIX 1
#define PF_UNIX AF_UNIX
//sys/un.h
struct sockaddr_un {
sa_family_t sun_family; // 地址族,通常设置为 AF_UNIX
char sun_path[UNIX_PATH_MAX]; // 套接字文件的路径
};
代码运行后,返回的结构体指针wpa_ctrl的相关值如下:
ctrl->s: 3
ctrl->local.sun_family: 1
ctrl->local.sun_path: /tmp/wpa_ctrl_13152-1
ctrl->dest.sun_family: 1
ctrl->dest.sun_path: /var/run/wpa_supplicant/wlan0
socket()函数返回的文件描述符从0开始分配,其中 :
-
0表示标准输入(stdin)
-
1 表示标准输出(stdout)
-
2 表示标准错误输出(stderr)
-
3 表示一个新的文件描述符,不与标准输入、输出或错误输出重叠
-
如果返回值为-1,表明创建socket套接字失败
最终,全局变量ctrl_conn的值也就被修改为ctrl
1.3.3 wpa_request函数
在main()函数的最后,调用了wpa_request()函数发送命令
ret = wpa_request(ctrl_conn, argc - optind, &argv[optind]);
argc表示参数的个数,sudo ./wpa_cli -i wlan0 scan
这条命令的参数共有4个(除sudo),所以argc为4
optind表示解析命令行参数的状态,初始值为1,每处理一个参数(-i、wlan0、scan均为参数),optind的值加1,当解析完所有参数时,optind的值为3
&argv[optind]表示最后一个参数的地址,即字符串scan
wpa_request()函数返回1个整型变量,成功返回0,失败返回-1,该函数有3个输入参数,如下
-
第1个输入参数为结构体指针ctrl,实际传递为全局变量ctrl_conn的值
-
第2个输入参数为待处理的参数个数argc,实际传递为argc - optind,即为4 - 3 = 1
-
第3个输入参数为具体的参数数组,实际为字符数组,内容为"scan"
该函数结构如下:
//wpa_supplicant\wpa_cli.c
struct wpa_cli_cmd {
const char *cmd;
int (*handler)(struct wpa_ctrl *ctrl, int argc, char *argv[]);
char ** (*completion)(const char *str, int pos);
enum wpa_cli_cmd_flags flags;
const char *usage;
};
//wpa_supplicant\wpa_cli.c
static const struct wpa_cli_cmd wpa_cli_commands[] = {
{ "scan", wpa_cli_cmd_scan, NULL,
cli_cmd_flag_none,
"= request new BSS scan" },
}
//wpa_supplicant\wpa_cli.c
static int wpa_request(struct wpa_ctrl *ctrl, int argc, char *argv[])
{
const struct wpa_cli_cmd *cmd, *match = NULL;
int count;
int ret = 0;
ifname_prefix = NULL;
if (argc == 0)
return -1;
count = 0;
cmd = wpa_cli_commands;
while (cmd->cmd) {
if (os_strncasecmp(cmd->cmd, argv[0], os_strlen(argv[0])) == 0)
{
match = cmd;
if (os_strcasecmp(cmd->cmd, argv[0]) == 0) {
/* we have an exact match */
count = 1;
break;
}
count++;
}
cmd++;
}
if (count > 1) {
printf("Ambiguous command '%s'; possible commands:", argv[0]);
cmd = wpa_cli_commands;
while (cmd->cmd) {
if (os_strncasecmp(cmd->cmd, argv[0],
os_strlen(argv[0])) == 0) {
printf(" %s", cmd->cmd);
}
cmd++;
}
printf("\n");
ret = 1;
} else if (count == 0) {
printf("Unknown command '%s'\n", argv[0]);
ret = 1;
} else {
ret = match->handler(ctrl, argc - 1, &argv[1]);
}
return ret;
}
该函数将参数"scan"与已经定义的数组wpa_cli_commands中的命令元素进行完全匹配
while (cmd->cmd) {
if (os_strncasecmp(cmd->cmd, argv[0], os_strlen(argv[0])) == 0)
{
match = cmd;
if (os_strcasecmp(cmd->cmd, argv[0]) == 0) {
count = 1;
break;
}
}
cmd++;
}
匹配到相同的命令后调用该命令对应的句柄函数,并将未处理参数个数减1,scan后已经没有参数,所以此时传递给句柄的值为0
match->handler(ctrl, argc - 1, &argv[1]);
scan命令对应的句柄函数为wpa_cli_cmd_scan(),之后的调用关系如下:
-
继续调用到wpa_cli_cmd()函数,传递cmd参数为"SCAN"
-
继续调用到wpa_ctrl_command()函数,传递cmd参数为"SCAN"
-
继续调用到_wpa_ctrl_command()函数,传递cmd参数为"SCAN"
-
最终调用到wpa_ctrl_request()函数,传递cmd参数为"SCAN",回调函数为wpa_cli_msg_cb()
主要函数调用如下:
//wpa_supplicant\wpa_cli.c
static int wpa_cli_cmd_scan(struct wpa_ctrl *ctrl, int argc, char *argv[])
{
return wpa_cli_cmd(ctrl, "SCAN", 0, argc, argv);
}
//wpa_supplicant\wpa_cli.c
static int wpa_cli_cmd(struct wpa_ctrl *ctrl, const char *cmd, int min_args,
int argc, char *argv[])
{
char buf[4096];
if (write_cmd(buf, sizeof(buf), cmd, argc, argv) < 0)
return -1;
return wpa_ctrl_command(ctrl, buf);
}
//wpa_supplicant\wpa_cli.c
static int wpa_ctrl_command(struct wpa_ctrl *ctrl, const char *cmd)
{
return _wpa_ctrl_command(ctrl, cmd, 1);
}
//wpa_supplicant\wpa_cli.c
static int _wpa_ctrl_command(struct wpa_ctrl *ctrl, const char *cmd, int print)
{
char buf[4096];
size_t len;
int ret;
len = sizeof(buf) - 1;
ret = wpa_ctrl_request(ctrl, cmd, os_strlen(cmd), buf, &len,
wpa_cli_msg_cb);
return 0;
}
wpa_ctrl_request()函数返回1个整型变量,成功返回0,失败返回-1,该函数有6个输入参数,如下
-
参数ctrl是socket控制接口
-
参数cmd是发送给wpa_supplicant的命令
-
参数cmd_len是命令长度
-
参数reply是wpa_supplicant对命令的回复
-
参数reply_len是回复的长度
-
参数msg_cb是绑定的消息回调函数
该函数结构如下:
//src\common\wpa_ctrl.c
int wpa_ctrl_request(struct wpa_ctrl *ctrl,
const char *cmd,
size_t cmd_len,
char *reply,
size_t *reply_len,
void (*msg_cb)(char *msg, size_t len))
{
struct timeval tv;
struct os_reltime started_at;
int res;
fd_set rfds;
const char *_cmd;
char *cmd_buf = NULL;
size_t _cmd_len;
{
_cmd = cmd;
_cmd_len = cmd_len;
}
errno = 0;
started_at.sec = 0;
started_at.usec = 0;
retry_send:
if (send(ctrl->s, _cmd, _cmd_len, 0) < 0) {
if (errno == EAGAIN || errno == EBUSY || errno == EWOULDBLOCK)
{
if (started_at.sec == 0)
os_get_reltime(&started_at);
else {
struct os_reltime n;
os_get_reltime(&n);
if (os_reltime_expired(&n, &started_at, 5))
goto send_err;
}
os_sleep(1, 0);
goto retry_send;
}
send_err:
os_free(cmd_buf);
return -1;
}
os_free(cmd_buf);
for (;;) {
tv.tv_sec = 10;
tv.tv_usec = 0;
FD_ZERO(&rfds);
FD_SET(ctrl->s, &rfds);
res = select(ctrl->s + 1, &rfds, NULL, NULL, &tv);
if (res < 0 && errno == EINTR)
continue;
if (res < 0)
return res;
if (FD_ISSET(ctrl->s, &rfds)) {
res = recv(ctrl->s, reply, *reply_len, 0);
if (res < 0)
return res;
if ((res > 0 && reply[0] == '<') ||
(res > 6 && strncmp(reply, "IFNAME=", 7) == 0)) {
if (msg_cb) {
if ((size_t) res == *reply_len)
res = (*reply_len) - 1;
reply[res] = '\0';
msg_cb(reply, res);
}
continue;
}
*reply_len = res;
break;
} else {
return -2;
}
}
return 0;
}
该函数调用send()发送命令到wpa_supplicant
然后在for循环里调用select()监视使用的socket文件,添加到可读文件集合,超时时间设置为10s
然后调用recv()接收来自wpa_supplicant的回复
最后,如果回调函数存在,则调用回调函数msg_cb,因回调函数设置为wpa_cli_msg_cb,所以实际调用了wpa_cli_msg_cb()函数
//src\common\wpa_ctrl.c
static void wpa_cli_msg_cb(char *msg, size_t len)
{
printf("%s\n", msg);
}
调用wpa_cli_msg_cb()函数时传递的mes参数为reply,所以该函数的功能是打印wpa_supplicant回复的消息
在终端显示的对命令sudo ./wpa_cli -i wlan0 scan
的回复为ok
最后整个程序结束
1.4 wpa_supplicant的main函数
wpa_supplicant程序的入口为wpa_supplicant\main.c下的main()函数
//wpa_supplicant\main.c
int main(int argc, char *argv[])
{
int c, i;
struct wpa_interface *ifaces, *iface;
int iface_count, exitcode = -1;
struct wpa_params params;
struct wpa_global *global;
os_memset(¶ms, 0, sizeof(params));
params.wpa_debug_level = MSG_INFO;
iface = ifaces = os_zalloc(sizeof(struct wpa_interface));
iface_count = 1;
for (;;) {
c = getopt(argc, argv,
"b:Bc:C:D:de:f:g:G:hi:I:KLMm:No:O:p:P:qsTtuvW");
if (c < 0)
break;
switch (c) {
case 'c':
iface->confname = optarg;
break;
case 'D':
iface->driver = optarg;
break;
case 'i':
iface->ifname = optarg;
break;
}
}
exitcode = 0;
global = wpa_supplicant_init(¶ms);
wpa_printf(MSG_INFO, "Successfully initialized " "wpa_supplicant");
for (i = 0; exitcode == 0 && i < iface_count; i++) {
struct wpa_supplicant *wpa_s;
wpa_s = wpa_supplicant_add_iface(global, &ifaces[i], NULL);
}
if (exitcode == 0)
exitcode = wpa_supplicant_run(global);
return exitcode;
}
在main()函数中关于调试级别的设置语句为:
params.wpa_debug_level = MSG_INFO;
将调试级别设置为MSG_DEBUG,可以增加调试信息,修改如下
params.wpa_debug_level = MSG_DEBUG;
在main()函数中主要调用了以下函数
-
1)wpa_supplicant_init
-
2)wpa_supplicant_add_iface
-
3)wpa_supplicant_run
1.4.1 wpa_supplicant_add_iface函数
对关键的wpa_supplicant_add_iface()函数分析如下:
//wpa_supplicant\wpa_supplicant.c
struct wpa_supplicant * wpa_supplicant_add_iface(struct wpa_global *global,
struct wpa_interface *iface,
struct wpa_supplicant *parent)
{
struct wpa_supplicant *wpa_s;
struct wpa_interface t_iface;
struct wpa_ssid *ssid;
wpa_s = wpa_supplicant_alloc(parent);
wpa_s->global = global;
if (wpa_supplicant_init_iface(wpa_s, &t_iface)) {
wpa_printf(MSG_DEBUG, "Failed to add interface %s",
iface->ifname);
wpa_supplicant_deinit_iface(wpa_s, 0, 0);
return NULL;
}
wpa_s->next = global->ifaces;
global->ifaces = wpa_s;
return wpa_s;
}
//wpa_supplicant\wpa_supplicant.c
static int wpa_supplicant_init_iface(struct wpa_supplicant *wpa_s,
const struct wpa_interface *iface)
{
wpa_printf(MSG_DEBUG, "Initializing interface '%s' conf '%s' driver "
"'%s' ctrl_interface '%s' bridge '%s'", iface->ifname,
iface->confname ? iface->confname : "N/A",
iface->driver ? iface->driver : "default",
iface->ctrl_interface ? iface->ctrl_interface : "N/A",
iface->bridge_ifname ? iface->bridge_ifname : "N/A");
wpa_s->ctrl_iface = wpa_supplicant_ctrl_iface_init(wpa_s);
return 0;
}
接着会跳转到unix的控制接口文件中
//wpa_supplicant\ctrl_iface_unix.c
struct ctrl_iface_priv *wpa_supplicant_ctrl_iface_init(struct wpa_supplicant *wpa_s)
{
struct ctrl_iface_priv *priv;
priv = os_zalloc(sizeof(*priv));
if (priv == NULL)
return NULL;
dl_list_init(&priv->ctrl_dst);
dl_list_init(&priv->msg_queue);
priv->wpa_s = wpa_s;
priv->sock = -1;
if (wpas_ctrl_iface_open_sock(wpa_s, priv) < 0) {
os_free(priv);
return NULL;
}
return priv;
}
static int wpas_ctrl_iface_open_sock(struct wpa_supplicant *wpa_s,
struct ctrl_iface_priv *priv)
{
eloop_register_read_sock(priv->sock, wpa_supplicant_ctrl_iface_receive, wpa_s, priv);
wpa_msg_register_cb(wpa_supplicant_ctrl_iface_msg_cb);
}
所以当wpa_supplicant程序接收到socket消息时就执行wpa_supplicant_ctrl_iface_receive()函数
//wpa_supplicant\ctrl_iface_unix.c
static void wpa_supplicant_ctrl_iface_receive(int sock,
void *eloop_ctx,
void *sock_ctx)
{
struct wpa_supplicant *wpa_s = eloop_ctx;
struct ctrl_iface_priv *priv = sock_ctx;
char *buf;
int res;
struct sockaddr_storage from;
socklen_t fromlen = sizeof(from);
char *reply = NULL, *reply_buf = NULL;
size_t reply_len = 0;
int new_attached = 0;
buf = os_malloc(CTRL_IFACE_MAX_LEN + 1);
res = recvfrom(sock, buf, CTRL_IFACE_MAX_LEN + 1, 0,
(struct sockaddr *) &from, &fromlen);
buf[res] = '\0';
reply_buf = wpa_supplicant_ctrl_iface_process(wpa_s, buf, &reply_len);
reply = reply_buf;
os_memset(buf, 0, res);
if (!reply && reply_len == 1) {
reply = "FAIL\n";
reply_len = 5;
} else if (!reply && reply_len == 2) {
reply = "OK\n";
reply_len = 3;
}
if (reply) {
wpas_ctrl_sock_debug("ctrl_sock-sendto", sock, reply, reply_len);
if (sendto(sock, reply, reply_len, 0, (struct sockaddr *) &from, fromlen) < 0) {
int _errno = errno;
wpa_dbg(wpa_s, MSG_DEBUG,
"ctrl_iface sendto failed: %d - %s",
_errno, strerror(_errno));
}
}
os_free(reply_buf);
os_free(buf);
}
在该函数主要中进行以下处理
-
调用recvfrom()函数接收来自wpa_cli的命令,将接收数据保存在字符指针buf里
-
调用wpa_supplicant_ctrl_iface_process()函数处理命令,返回结果保存在字符指针reply_buf和字符指针reply中
-
调用sendto()函数向socket发送回复reply
进一步分析wpa_supplicant接收wpa_cli的消息入口为wpa_supplicant_ctrl_iface_process()函数
//wpa_supplicant\ctrl_iface.c
char * wpa_supplicant_ctrl_iface_process(struct wpa_supplicant *wpa_s,
char *buf,
size_t *resp_len)
{
char *reply;
const int reply_size = 4096;
int reply_len;
int level = wpas_ctrl_cmd_debug_level(buf);
wpa_dbg(wpa_s, level, "Control interface command '%s'", buf);
reply = os_malloc(reply_size);
os_memcpy(reply, "OK\n", 3);
reply_len = 3;
if (os_strcmp(buf, "SCAN") == 0) {
wpas_ctrl_scan(wpa_s, NULL, reply, reply_size, &reply_len);
} else if (os_strncmp(buf, "SCAN ", 5) == 0) {
wpas_ctrl_scan(wpa_s, buf + 5, reply, reply_size, &reply_len);
}
if (reply_len < 0) {
os_memcpy(reply, "FAIL\n", 5);
reply_len = 5;
}
*resp_len = reply_len;
return reply;
}
//wpa_supplicant\ctrl_iface.c
static void wpas_ctrl_scan(struct wpa_supplicant *wpa_s, char *params,
char *reply, int reply_size, int *reply_len)
{
if (!wpa_s->sched_scanning && !wpa_s->scanning &&
((wpa_s->wpa_state <= WPA_SCANNING) ||
(wpa_s->wpa_state == WPA_COMPLETED))) {
wpa_supplicant_req_scan(wpa_s, 0, 0);
} else if (wpa_s->sched_scanning) {
wpa_supplicant_req_scan(wpa_s, 0, 0);
}
}
最终执行到scan.c文件中的wpa_supplicant_req_scan()函数,发起扫描请求
//wpa_supplicant\scan.c
void wpa_supplicant_req_scan(struct wpa_supplicant *wpa_s, int sec, int usec)
{
int res;
res = eloop_deplete_timeout(sec, usec, wpa_supplicant_scan, wpa_s,NULL);
wpa_dbg(wpa_s, MSG_DEBUG, "Setting scan request: %d.%06d sec", sec, usec);
eloop_register_timeout(sec, usec, wpa_supplicant_scan, wpa_s, NULL);
}
nl80211向底层驱动发送触发扫描的NL80211_CMD_TRIGGER_SCAN命令
wpa_driver_nl80211_scan()函数最后调用send_and_recv_msgs()函数
在该函数内继续调用send_and_recv()函数,在该函数内继续调用libnl库的nl_send_auto_complete()函数、nl_recvmsgs()函数向内核驱动发送和接收消息
其中,libnl(Linux Netlink库)是一个用于处理Linux内核通信机制Netlink的C库
调用到nl80211驱动,接收到底层驱动返回给nl80211驱动接口的NL80211_CMD_TRIGGER_SCAN触发扫描驱动事件文章来源:https://www.toymoban.com/news/detail-843821.html
nl80211驱动上报给wpa_supplicant的event事件文章来源地址https://www.toymoban.com/news/detail-843821.html
到了这里,关于wpa_supplicant与用户态程序的交互分析的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!