private String action;
/**
- 请求体
*/
private RequestChild req;
/**
- 请求次数
*/
private transient int reqCount;
/**
- 超时的时间
*/
private transient int timeOut;
public Request() {
}
public Request(String action, int reqCount, int timeOut, RequestChild req) {
this.action = action;
this.req = req;
this.reqCount = reqCount;
this.timeOut = timeOut;
}
public static class Builder {
//action 请求类型
private String action;
//请求子类数据 按照具体业务划分
private RequestChild req;
//请求次数 便于重试
private int reqCount;
//超时时间
private int timeOut;
public Builder action(String action) {
this.action = action;
return this;
}
public Builder req(RequestChild req) {
this.req = req;
return this;
}
public Builder reqCount(int reqCount) {
this.reqCount = reqCount;
return this;
}
public Builder timeOut(int timeOut) {
this.timeOut = timeOut;
return this;
}
public Request build() {
return new Request(action, reqCount, timeOut, req);
}
}
}
public class RequestChild {
/**
- 设备类型
*/
private String clientType;
/**
- 用于用户注册的id
*/
private String id;
public RequestChild(String clientType, String id) {
this.clientType = clientType;
this.id = id;
}
public RequestChild() {
}
public static class Builder {
private String clientType;
private String id;
public RequestChild.Builder setClientType(String clientType) {
this.clientType = clientType;
return this;
}
public RequestChild.Builder setId(String id) {
this.id = id;
return this;
}
public RequestChild build() {
return new RequestChild(clientType, id);
}
}
}
我们添加一个发送请求的方法如下:
/**
-
发送请求
-
@param request 请求体
-
@param reqCount 请求次数
-
@param requestListern 请求回调
*/
private void senRequest(Request request, final int reqCount, final RequestListern requestListern) {
if (!isNetConnect()) {
requestListern.requestFailed(“网络未连接”);
return;
}
}
请求回调如下所示
public interface RequestListern {
/**
- 请求成功
*/
void requestSuccess();
/**
-
请求失败
-
@param message 请求失败消息提示
*/
void requestFailed(String message);
}
接着我们要把请求放在超时队列中,新建超时任务类,对应的分别是请求参数、请求回调、任务调度
public class TimeOutTask {
/**
- 请求主体
*/
private Request request;
/**
- 通用返回
*/
private RequestCallBack requestCallBack;
/**
- r任务
*/
private ScheduledFuture scheduledFuture;
public TimeOutTask(Request request,
RequestCallBack requestCallBack,
ScheduledFuture scheduledFuture) {
this.request = request;
this.requestCallBack = requestCallBack;
this.scheduledFuture = scheduledFuture;
}
public ScheduledFuture getScheduledFuture() {
return scheduledFuture;
}
public void setScheduledFuture(ScheduledFuture scheduledFuture) {
this.scheduledFuture = scheduledFuture;
}
public Request getRequest() {
return request;
}
public void setRequest(Request request) {
this.request = request;
}
public RequestCallBack getRequestCallBack() {
return requestCallBack;
}
public void setRequestCallBack(RequestCallBack requestCallBack) {
this.requestCallBack = requestCallBack;
}
}
RequestCallBack是超时任务的回调,只是比请求回调多了个超时,因为超时的处理机制是一样的,所以这里我们没必要将超时回调到请求中
public interface RequestCallBack {
/**
- 请求成功
*/
void requestSuccess();
/**
-
请求失败
-
@param request 请求体
-
@param message 请求失败的消息
*/
void requestFailed(String message, Request request);
/**
-
请求超时
-
@param request 请求体
*/
void timeOut(Request request);
}
/**
- 添加超时任务
*/
private ScheduledFuture enqueueTimeout(final Request request, final long timeout) {
Log.d(TAG, " " + “enqueueTimeout: 添加超时任务类型为:” + request.getAction());
return executor.schedule(new Runnable() {
@Override
public void run() {
TimeOutTask timeoutTask = callbacks.remove(request.getAction());
if (timeoutTask != null) {
timeoutTask.getRequestCallBack().timeOut(timeoutTask.getRequest());
}
}
}, timeout, TimeUnit.MILLISECONDS);
}
超时任务的方法 是通过任务调度定时调用,请求成功后我们会把超时任务移除,当到了超时时间时,任务还存在就说明任务超时了。
每次的任务我们以action为键值存在hashMap中
private Map<String, CallbackWrapper> callbacks = new HashMap<>();
将任务放入超时任务代码如下所示:
final ScheduledFuture timeoutTask = enqueueTimeout(request, request.getTimeOut());
final RequestCallBack requestCallBack = new RequestCallBack() {
@Override
public void requestSuccess() {
requestListern.requestSuccess();
}
@Override
public void requestFailed(String message, Request request) {
requestListern.requestFailed(message);
}
@Override
public void timeOut(Request request) {
timeOutHanlder(request);
}
};
callbacks.put(request.getAction(),
new CallbackWrapper(request, requestCallBack, timeoutTask));
一般而言,任务超时都是由于连接原因导致,所以我们这里可以尝试重试一次,如果还是超时,通过 timeOutHanlder(request);方法 进行重新连接,重连代码和连接代码一样,这里就省略了,做好这步操作,我们就可以发送消息了。
/**
- 超时任务
*/
private void timeOutHanlder(Request requset) {
setStatus(WsStatus.CONNECT_FAIL);
//这里假装有重连
Log.d(TAG, “timeOutHanlder: 请求超时 准备重连”);
}
到这里我们的流程基本可以走通了。
心跳
–
首先我们要了解下心跳的作用是什么,心跳是在连接成功后,通过固定的间隔时间向服务器发送询问,当前是否还在线,有很多人说心跳失败我们就重连,成功就继续心跳,但是这里要注意的是,我们一般是收不到心跳失败回调的,心跳也是向服务器发送数据,所以我们要将所有的主动请求都放在超时任务队列中,
所以对websocket来说 请求结果有三种:成功、失败、超时,对于用户 只有成功、失败即可。
至于心跳、注册等请求发送的数据是什么,这就得看我们与服务端定的协议是什么样了,通常来说 分为action 和 requestBody,协议格式我们再第二步已经封装好了,这里我们以心跳任务为例验证上面的封装。
/**
- 心跳
*/
void keepAlive() {
Request request = new Request.Builder()
.reqCount(0)
.timeOut(REQUEST_TIMEOUT)
.action(ACTION_KEEPALIVE).build();
WsManager.getWsManger().senRequest(request, request.getReqCount() + 1, new RequestListern() {
@Override
public void requestSuccess() {
Log.d(TAG, “requestSuccess: 心跳发送成功了”);
}
@Override
public void requestFailed(String message) {
}
});
}
我们每间隔10s中开启一次心跳任务
/**
- 开始心跳
*/
public void startKeepAlive() {
mHandler.postDelayed(mKeepAliveTask, HEART_BEAT_RATE);
}
/**
- 心跳任务
*/
private Runnable mKeepAliveTask = new Runnable() {
@Override
public void run() {
keepAlive();
mHandler.removeCallbacks(mKeepAliveTask);
mHandler.postDelayed(mKeepAliveTask, HEART_BEAT_RATE);
}
};
为了便于操作演示,在主页面上加个按钮 ,点击按钮调用startKeepAlive方法,运行如下所示:
我们可以看到心跳返回的statue是300 不成功,5秒之后走到了请求超时的方法中,所以如果状态返回成功的话,我们需要回调给调用者
/**
-
处理 任务回调
-
@param action 请求类型
*/
void disPatchCallbackWarp(String action, boolean isSuccess) {
CallbackWrapper callBackWarp = callbacks.remove(action);
if (callBackWarp == null) {
Logger.d(TAG+" "+ “disPatchCallbackWarp: 任务队列为空”);
} else {
callBackWarp.getScheduledFuture().cancel(true);
if (isSuccess) {
callBackWarp.getRequestCallBack().requestSuccess();
} else {
callBackWarp.getRequestCallBack().requestFailed(“”, new Request());
}
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数前端工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年Web前端开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上前端开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!
如果你觉得这些内容对你有帮助,可以扫码获取!!(资料价值较高,非无偿)
最后
文章到这里就结束了,如果觉得对你有帮助可以点个赞哦,如果有需要前端校招面试题PDF完整版的朋友可以点击这里即可获取,包括答案解析。文章来源:https://www.toymoban.com/news/detail-844209.html
}
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数前端工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年Web前端开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
[外链图片转存中…(img-YRC52lOt-1711650799331)]
[外链图片转存中…(img-3hCy01pL-1711650799332)]
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上前端开发知识点,真正体系化!
[外链图片转存中…(img-H7N4DtBs-1711650799332)]
由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!
如果你觉得这些内容对你有帮助,可以扫码获取!!(资料价值较高,非无偿)
最后
文章到这里就结束了,如果觉得对你有帮助可以点个赞哦,如果有需要前端校招面试题PDF完整版的朋友可以点击这里即可获取,包括答案解析。
[外链图片转存中…(img-r8e7irvH-1711650799332)]文章来源地址https://www.toymoban.com/news/detail-844209.html
到了这里,关于Android中 使用 WebSocket 实现消息通信的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!