Langchain-Chatchat-Ubuntu服务器本地安装部署笔记

这篇具有很好参考价值的文章主要介绍了Langchain-Chatchat-Ubuntu服务器本地安装部署笔记。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

 Langchain-Chatchat(原Langchain-ChatGLM)基于 Langchain 与 ChatGLM 等语言模型的本地知识库问答 | Langchain-Chatchat (formerly langchain-ChatGLM), local knowledge based LLM (like ChatGLM) QA app with langchain。

        开源网址:https://github.com/chatchat-space/Langchain-Chatchat

​        因为这是自己毕设项目所需,利用虚拟机实验一下是否能成功部署。项目参考:Langchain-Chatchat-win10本地安装部署成功笔记(CPU)_file "d:\ai\virtual-digital-human\langchain-chatch-CSDN博客

其中有些是自己遇到的坑也会在这里说一下。

一、实验环境

可以查看目前使用的系统版本信息。

cat /proc/version
Linux version 5.15.133.1-microsoft-standard-WSL2 (root@1c602f52c2e4) (gcc (GCC) 11.2.0, GNU ld (GNU Binutils) 2.37) #1 SMP Thu Oct 5 21:02:42 UTC 2023

如果安装有显卡驱动,可以使用下面的代码来查看显卡信息。

nvidia-smi  #查看显卡信息

Sat Mar  9 19:31:33 2024
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 550.40.06              Driver Version: 551.23         CUDA Version: 12.4     |
|-----------------------------------------+------------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id          Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
|                                         |                        |               MIG M. |
|=========================================+========================+======================|
|   0  NVIDIA GeForce RTX 3090        On  |   00000000:AF:00.0 Off |                  N/A |
| 32%   25C    P8              6W /  350W |     134MiB /  24576MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   1  NVIDIA GeForce RTX 3090        On  |   00000000:D8:00.0 Off |                  N/A |
| 32%   24C    P8             11W /  350W |     144MiB /  24576MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
                                                                                   
+-----------------------------------------------------------------------------------------+
| Processes:                                                                              |
|  GPU   GI   CI        PID   Type   Process name                              GPU Memory |
|        ID   ID                                                               Usage      |
|=========================================================================================|
|    0   N/A  N/A       227      G   /Xwayland                                   N/A      |
|    1   N/A  N/A       227      G   /Xwayland                                   N/A      |
+-----------------------------------------------------------------------------------------+

二、安装步骤

1、安装 Anaconda软件,用于管理python虚拟环境

自己使用的是清华镜像:Index of /anaconda/archive/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror

wget下载命令如下:

 wget -c 'https://repo.anaconda.com/archive/Anaconda3-2023.09-0-Linux-x86_64.sh' -P <下载到的文件的位置>

 2、创建python运行虚拟环境

ubuntu 安装langchain-chatchat,Langchain-Chatchat 学习,langchain,笔记,python,ubuntu,大数据

可以通过 conda info --envs 检查环境是否创建完成。

# conda environments:
#
base                     /home/david/anaconda3
NAD                      /home/david/anaconda3/envs/NAD
chat                     /home/david/anaconda3/envs/chat
chat_demo                /home/david/anaconda3/envs/chat_demo

进入已经创建好的虚拟环境:conda activate 环境名称

$ conda activate chat_demo
(chat_demo) $ python --version
Python 3.11.7

3、安装pytorch

~$ pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 -i https://pypi.tuna.tsinghua.edu.cn/simple
Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple
Collecting torch
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/2c/df/5810707da6f2fd4be57f0cc417987c0fa16a2eecf0b1b71f82ea555dc619/torch-2.2.1-cp311-cp311-manylinux1_x86_64.whl (755.6 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 755.6/755.6 MB 2.4 MB/s eta 0:00:00
Collecting torchvision
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/3a/49/12fc5188602c68a789a0fdaee63d176a71ad5c1e34d25aeb8554abe46089/torchvision-0.17.1-cp311-cp311-manylinux1_x86_64.whl (6.9 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 6.9/6.9 MB 6.6 MB/s eta 0:00:00
Collecting torchaudio
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/a6/57/ccebdda4db80e384166c70d8645fa998637051b3b19aca1fd8de80602afb/torchaudio-2.2.1-cp311-cp311-manylinux1_x86_64.whl (3.3 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 3.3/3.3 MB 6.7 MB/s eta 0:00:00
Collecting filelock (from torch)
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/81/54/84d42a0bee35edba99dee7b59a8d4970eccdd44b99fe728ed912106fc781/filelock-3.13.1-py3-none-any.whl (11 kB)
Collecting typing-extensions>=4.8.0 (from torch)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/f9/de/dc04a3ea60b22624b51c703a84bbe0184abcd1d0b9bc8074b5d6b7ab90bb/typing_extensions-4.10.0-py3-none-any.whl (33 kB)
Collecting sympy (from torch)
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/d2/05/e6600db80270777c4a64238a98d442f0fd07cc8915be2a1c16da7f2b9e74/sympy-1.12-py3-none-any.whl (5.7 MB)
Collecting networkx (from torch)
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/d5/f0/8fbc882ca80cf077f1b246c0e3c3465f7f415439bdea6b899f6b19f61f70/networkx-3.2.1-py3-none-any.whl (1.6 MB)
Collecting jinja2 (from torch)
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/30/6d/6de6be2d02603ab56e72997708809e8a5b0fbfee080735109b40a3564843/Jinja2-3.1.3-py3-none-any.whl (133 kB)
Collecting fsspec (from torch)
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/ad/30/2281c062222dc39328843bd1ddd30ff3005ef8e30b2fd09c4d2792766061/fsspec-2024.2.0-py3-none-any.whl (170 kB)
Collecting nvidia-cuda-nvrtc-cu12==12.1.105 (from torch)
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/b6/9f/c64c03f49d6fbc56196664d05dba14e3a561038a81a638eeb47f4d4cfd48/nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (23.7 MB)
Collecting nvidia-cuda-runtime-cu12==12.1.105 (from torch)
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/eb/d5/c68b1d2cdfcc59e72e8a5949a37ddb22ae6cade80cd4a57a84d4c8b55472/nvidia_cuda_runtime_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (823 kB)
Collecting nvidia-cuda-cupti-cu12==12.1.105 (from torch)
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/7e/00/6b218edd739ecfc60524e585ba8e6b00554dd908de2c9c66c1af3e44e18d/nvidia_cuda_cupti_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (14.1 MB)
Collecting nvidia-cudnn-cu12==8.9.2.26 (from torch)
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/ff/74/a2e2be7fb83aaedec84f391f082cf765dfb635e7caa9b49065f73e4835d8/nvidia_cudnn_cu12-8.9.2.26-py3-none-manylinux1_x86_64.whl (731.7 MB)
Collecting nvidia-cublas-cu12==12.1.3.1 (from torch)
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/37/6d/121efd7382d5b0284239f4ab1fc1590d86d34ed4a4a2fdb13b30ca8e5740/nvidia_cublas_cu12-12.1.3.1-py3-none-manylinux1_x86_64.whl (410.6 MB)
Collecting nvidia-cufft-cu12==11.0.2.54 (from torch)
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/86/94/eb540db023ce1d162e7bea9f8f5aa781d57c65aed513c33ee9a5123ead4d/nvidia_cufft_cu12-11.0.2.54-py3-none-manylinux1_x86_64.whl (121.6 MB)
Collecting nvidia-curand-cu12==10.3.2.106 (from torch)
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/44/31/4890b1c9abc496303412947fc7dcea3d14861720642b49e8ceed89636705/nvidia_curand_cu12-10.3.2.106-py3-none-manylinux1_x86_64.whl (56.5 MB)
Collecting nvidia-cusolver-cu12==11.4.5.107 (from torch)
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/bc/1d/8de1e5c67099015c834315e333911273a8c6aaba78923dd1d1e25fc5f217/nvidia_cusolver_cu12-11.4.5.107-py3-none-manylinux1_x86_64.whl (124.2 MB)
Collecting nvidia-cusparse-cu12==12.1.0.106 (from torch)
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/65/5b/cfaeebf25cd9fdec14338ccb16f6b2c4c7fa9163aefcf057d86b9cc248bb/nvidia_cusparse_cu12-12.1.0.106-py3-none-manylinux1_x86_64.whl (196.0 MB)
Collecting nvidia-nccl-cu12==2.19.3 (from torch)
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/38/00/d0d4e48aef772ad5aebcf70b73028f88db6e5640b36c38e90445b7a57c45/nvidia_nccl_cu12-2.19.3-py3-none-manylinux1_x86_64.whl (166.0 MB)
Collecting nvidia-nvtx-cu12==12.1.105 (from torch)
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/da/d3/8057f0587683ed2fcd4dbfbdfdfa807b9160b809976099d36b8f60d08f03/nvidia_nvtx_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (99 kB)
Collecting triton==2.2.0 (from torch)
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/bd/ac/3974caaa459bf2c3a244a84be8d17561f631f7d42af370fc311defeca2fb/triton-2.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (167.9 MB)
Collecting nvidia-nvjitlink-cu12 (from nvidia-cusolver-cu12==11.4.5.107->torch)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/58/d1/d1c80553f9d5d07b6072bc132607d75a0ef3600e28e1890e11c0f55d7346/nvidia_nvjitlink_cu12-12.4.99-py3-none-manylinux2014_x86_64.whl (21.1 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 21.1/21.1 MB 6.6 MB/s eta 0:00:00
Collecting numpy (from torchvision)
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/3a/d0/edc009c27b406c4f9cbc79274d6e46d634d139075492ad055e3d68445925/numpy-1.26.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.3 MB)
Collecting pillow!=8.3.*,>=5.3.0 (from torchvision)
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/66/9c/2e1877630eb298bbfd23f90deeec0a3f682a4163d5ca9f178937de57346c/pillow-10.2.0-cp311-cp311-manylinux_2_28_x86_64.whl (4.5 MB)
Collecting MarkupSafe>=2.0 (from jinja2->torch)
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/97/18/c30da5e7a0e7f4603abfc6780574131221d9148f323752c2755d48abad30/MarkupSafe-2.1.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (28 kB)
Collecting mpmath>=0.19 (from sympy->torch)
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/43/e3/7d92a15f894aa0c9c4b49b8ee9ac9850d6e63b03c9c32c0367a13ae62209/mpmath-1.3.0-py3-none-any.whl (536 kB)
Installing collected packages: mpmath, typing-extensions, sympy, pillow, nvidia-nvtx-cu12, nvidia-nvjitlink-cu12, nvidia-nccl-cu12, nvidia-curand-cu12, nvidia-cufft-cu12, nvidia-cuda-runtime-cu12, nvidia-cuda-nvrtc-cu12, nvidia-cuda-cupti-cu12, nvidia-cublas-cu12, numpy, networkx, MarkupSafe, fsspec, filelock, triton, nvidia-cusparse-cu12, nvidia-cudnn-cu12, jinja2, nvidia-cusolver-cu12, torch, torchvision, torchaudio
Successfully installed MarkupSafe-2.1.5 filelock-3.13.1 fsspec-2024.2.0 jinja2-3.1.3 mpmath-1.3.0 networkx-3.2.1 numpy-1.26.4 nvidia-cublas-cu12-12.1.3.1 nvidia-cuda-cupti-cu12-12.1.105 nvidia-cuda-nvrtc-cu12-12.1.105 nvidia-cuda-runtime-cu12-12.1.105 nvidia-cudnn-cu12-8.9.2.26 nvidia-cufft-cu12-11.0.2.54 nvidia-curand-cu12-10.3.2.106 nvidia-cusolver-cu12-11.4.5.107 nvidia-cusparse-cu12-12.1.0.106 nvidia-nccl-cu12-2.19.3 nvidia-nvjitlink-cu12-12.4.99 nvidia-nvtx-cu12-12.1.105 pillow-10.2.0 sympy-1.12 torch-2.2.1 torchaudio-2.2.1 torchvision-0.17.1 triton-2.2.0 typing-extensions-4.10.0

验证是否安装成功:

~$ python
Python 3.11.7 (main, Dec 15 2023, 18:12:31) [GCC 11.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>> x = torch.rand(5,3)
>>> print(x)
tensor([[0.8278, 0.8746, 0.1025],
        [0.7528, 0.6855, 0.7386],
        [0.6271, 0.1371, 0.1849],
        [0.4098, 0.3203, 0.7615],
        [0.5088, 0.7645, 0.8044]])

4、拉取Langchain-Chatchat源代码

 有两种方式获取源代码,一种是获取最新代码,一种是获取指定版本的源代码。

# 拉取仓库

git clone https://github.com/chatchat-space/Langchain-Chatchat.git

# 指定版本获取代码

git clone -b v0.2.6 https://github.com/chatchat-space/Langchain-Chatchat.git

在拉取源代码之前先安装 git

5、安装依赖包

cd Langchain-Chatchat

pip3 install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple/
Found existing installation: triton 2.2.0
    Uninstalling triton-2.2.0:
      Successfully uninstalled triton-2.2.0
  Attempting uninstall: pillow
    Found existing installation: pillow 10.2.0
    Uninstalling pillow-10.2.0:
      Successfully uninstalled pillow-10.2.0
  Attempting uninstall: nvidia-nccl-cu12
    Found existing installation: nvidia-nccl-cu12 2.19.3
    Uninstalling nvidia-nccl-cu12-2.19.3:
      Successfully uninstalled nvidia-nccl-cu12-2.19.3
  Attempting uninstall: numpy
    Found existing installation: numpy 1.26.4
    Uninstalling numpy-1.26.4:
      Successfully uninstalled numpy-1.26.4
  Attempting uninstall: torch
    Found existing installation: torch 2.2.1
    Uninstalling torch-2.2.1:
      Successfully uninstalled torch-2.2.1
  Attempting uninstall: torchvision
    Found existing installation: torchvision 0.17.1
    Uninstalling torchvision-0.17.1:
      Successfully uninstalled torchvision-0.17.1
  Attempting uninstall: torchaudio
    Found existing installation: torchaudio 2.2.1
    Uninstalling torchaudio-2.2.1:
      Successfully uninstalled torchaudio-2.2.1
Successfully installed PyMuPDF-1.23.16 PyMuPDFb-1.23.9 SQLAlchemy-2.0.25 Shapely-2.0.3 XlsxWriter-3.2.0 accelerate-0.24.1 aiofiles-23.2.1 aiohttp-3.9.3 aioprometheus-23.12.0 aiosignal-1.3.1 altair-5.2.0 antlr4-python3-runtime-4.9.3 anyio-4.3.0 arxiv-2.1.0 attrs-23.2.0 backoff-2.2.1 beautifulsoup4-4.12.3 blinker-1.7.0 blis-0.7.11 brotli-1.1.0 cachetools-5.3.3 catalogue-2.0.10 certifi-2024.2.2 cffi-1.16.0 chardet-5.2.0 charset-normalizer-3.3.2 click-8.1.7 cloudpathlib-0.16.0 coloredlogs-15.0.1 confection-0.1.4 contourpy-1.2.0 cryptography-42.0.5 cycler-0.12.1 cymem-2.0.8 dataclasses-json-0.6.4 deepdiff-6.7.1 deprecated-1.2.14 deprecation-2.1.0 distro-1.9.0 duckduckgo-search-3.9.9 effdet-0.4.1 einops-0.7.0 emoji-2.10.1 et-xmlfile-1.1.0 faiss-cpu-1.7.4 fastapi-0.109.0 feedparser-6.0.10 filetype-1.2.0 flatbuffers-24.3.7 fonttools-4.49.0 frozenlist-1.4.1 fschat-0.2.35 gitdb-4.0.11 gitpython-3.1.42 greenlet-3.0.3 h11-0.14.0 h2-4.1.0 hpack-4.0.0 httpcore-1.0.4 httptools-0.6.1 httpx-0.26.0 httpx_sse-0.4.0 huggingface-hub-0.21.4 humanfriendly-10.0 hyperframe-6.0.1 idna-3.6 importlib-metadata-7.0.2 iniconfig-2.0.0 iopath-0.1.10 joblib-1.3.2 jsonpatch-1.33 jsonpath-python-1.0.6 jsonpointer-2.4 jsonschema-4.21.1 jsonschema-specifications-2023.12.1 kiwisolver-1.4.5 langchain-0.0.354 langchain-community-0.0.20 langchain-core-0.1.23 langchain-experimental-0.0.47 langcodes-3.3.0 langdetect-1.0.9 langsmith-0.0.87 layoutparser-0.3.4 llama-index-0.9.35 lxml-5.1.0 markdown-3.5.2 markdown-it-py-3.0.0 markdown2-2.4.13 markdownify-0.11.6 marshmallow-3.21.1 matplotlib-3.8.3 mdurl-0.1.2 metaphor-python-0.1.23 msg-parser-1.2.0 msgpack-1.0.8 multidict-6.0.5 murmurhash-1.0.10 mypy-extensions-1.0.0 nest-asyncio-1.6.0 nh3-0.2.15 ninja-1.11.1.1 nltk-3.8.1 numexpr-2.8.6 numpy-1.24.4 nvidia-nccl-cu12-2.18.1 olefile-0.47 omegaconf-2.3.0 onnx-1.15.0 onnxruntime-1.15.1 openai-1.9.0 opencv-python-4.9.0.80 openpyxl-3.1.2 ordered-set-4.1.0 orjson-3.9.15 packaging-23.2 pandas-2.0.3 pathlib-1.0.1 pdf2image-1.17.0 pdfminer.six-20231228 pdfplumber-0.11.0 pikepdf-8.4.1 pillow-9.5.0 pillow-heif-0.15.0 pluggy-1.4.0 portalocker-2.8.2 preshed-3.0.9 prompt-toolkit-3.0.43 protobuf-4.25.3 psutil-5.9.8 pyarrow-15.0.1 pyclipper-1.3.0.post5 pycocotools-2.0.7 pycparser-2.21 pydantic-1.10.13 pydeck-0.8.1b0 pygments-2.17.2 pyjwt-2.8.0 pypandoc-1.13 pyparsing-3.1.2 pypdf-4.1.0 pypdfium2-4.27.0 pytesseract-0.3.10 pytest-7.4.3 python-dateutil-2.9.0.post0 python-decouple-3.8 python-docx-1.1.0 python-dotenv-1.0.1 python-iso639-2024.2.7 python-magic-0.4.27 python-multipart-0.0.9 python-pptx-0.6.23 pytz-2024.1 pyyaml-6.0.1 quantile-python-1.1 rapidfuzz-3.6.2 rapidocr_onnxruntime-1.3.8 ray-2.9.3 referencing-0.33.0 regex-2023.12.25 requests-2.31.0 rich-13.7.1 rpds-py-0.18.0 safetensors-0.4.2 scikit-learn-1.4.1.post1 scipy-1.12.0 sentence_transformers-2.2.2 sentencepiece-0.2.0 sgmllib3k-1.0.0 shortuuid-1.0.12 simplejson-3.19.2 six-1.16.0 smart-open-6.4.0 smmap-5.0.1 sniffio-1.3.1 socksio-1.0.0 soupsieve-2.5 spacy-3.7.2 spacy-legacy-3.0.12 spacy-loggers-1.0.5 srsly-2.4.8 sse_starlette-1.8.2 starlette-0.35.0 streamlit-1.30.0 streamlit-aggrid-0.3.4.post3 streamlit-antd-components-0.3.1 streamlit-chatbox-1.1.11 streamlit-feedback-0.1.3 streamlit-modal-0.1.0 streamlit-option-menu-0.3.12 strsimpy-0.2.1 svgwrite-1.4.3 tabulate-0.9.0 tenacity-8.2.3 thinc-8.2.3 threadpoolctl-3.3.0 tiktoken-0.5.2 timm-0.9.16 tokenizers-0.15.2 toml-0.10.2 toolz-0.12.1 torch-2.1.2 torchaudio-2.1.2 torchvision-0.16.2 tornado-6.4 tqdm-4.66.1 transformers-4.37.2 transformers_stream_generator-0.0.4 triton-2.1.0 typer-0.9.0 typing-inspect-0.9.0 tzdata-2024.1 tzlocal-5.2 unstructured-0.12.5 unstructured-client-0.21.1 unstructured-inference-0.7.23 unstructured.pytesseract-0.3.12 urllib3-2.2.1 uvicorn-0.28.0 uvloop-0.19.0 validators-0.22.0 vllm-0.2.7 wasabi-1.1.2 watchdog-3.0.0 watchfiles-0.21.0 wavedrom-2.0.3.post3 wcwidth-0.2.13 weasel-0.3.4 websockets-12.0 wrapt-1.16.0 xformers-0.0.23.post1 xlrd-2.0.1 yarl-1.9.4 youtube-search-2.1.2 zipp-3.17.0

6、下载模型

下载两个模型:M3e-base 内置模型和 chatglm3-6b 模型。

git lfs install

git clone https://gitee.com/hf-models/m3e-base.git

git clone https://gitee.com/hf-models/chatglm3-6b.git

如果需要上 huggingface.co 获取模型可能需要科学上网工具。

ubuntu 安装langchain-chatchat,Langchain-Chatchat 学习,langchain,笔记,python,ubuntu,大数据

ubuntu 安装langchain-chatchat,Langchain-Chatchat 学习,langchain,笔记,python,ubuntu,大数据

7、修改配置文件

批量修改配置文件名

批量复制configs目录下所有的配置文件,去掉example后缀:

# cd Langchain-Chatchat
# 批量复制configs目录下所有配置文件,去掉example
python copy_config_example.py
修改model_config.py文件

修改m3e-base的模型本地路径(注意是双反斜杠"\\"):

ubuntu 安装langchain-chatchat,Langchain-Chatchat 学习,langchain,笔记,python,ubuntu,大数据

ubuntu 安装langchain-chatchat,Langchain-Chatchat 学习,langchain,笔记,python,ubuntu,大数据

ubuntu 安装langchain-chatchat,Langchain-Chatchat 学习,langchain,笔记,python,ubuntu,大数据

ubuntu 安装langchain-chatchat,Langchain-Chatchat 学习,langchain,笔记,python,ubuntu,大数据

修改server_config.py

0.2.6之前版本,需要修改0.0.0.0为127.0.0.1不然会报错。

# 各服务器默认绑定host。如改为"0.0.0.0"需要修改下方所有XX_SERVER的host
DEFAULT_BIND_HOST = "127.0.0.1" if sys.platform != "win32" else "127.0.0.1"

8、初始化数据库

python init_database.py --recreate-vs

ubuntu 安装langchain-chatchat,Langchain-Chatchat 学习,langchain,笔记,python,ubuntu,大数据

配置里面模型的运行设置设置为 auto (还是建议用显卡跑)

ubuntu 安装langchain-chatchat,Langchain-Chatchat 学习,langchain,笔记,python,ubuntu,大数据

ubuntu 安装langchain-chatchat,Langchain-Chatchat 学习,langchain,笔记,python,ubuntu,大数据

9、一键启动项目

运行:

python startup.py -a
==============================Langchain-Chatchat Configuration==============================
操作系统:Linux-5.15.133.1-microsoft-standard-WSL2-x86_64-with-glibc2.35.
python版本:3.11.7 (main, Dec 15 2023, 18:12:31) [GCC 11.2.0]
项目版本:v0.2.10
langchain版本:0.0.354. fastchat版本:0.2.35


当前使用的分词器:ChineseRecursiveTextSplitter
当前启动的LLM模型:['chatglm3-6b'] @ cuda
{'device': 'cuda',
 'host': '127.0.0.1',
 'infer_turbo': False,
 'model_path': 'model/chatglm3-6b',
 'model_path_exists': True,
 'port': 20002}
当前Embbedings模型: m3e-base @ cuda
==============================Langchain-Chatchat Configuration==============================


2024-03-09 20:18:03,837 - startup.py[line:655] - INFO: 正在启动服务:
2024-03-09 20:18:03,838 - startup.py[line:656] - INFO: 如需查看 llm_api 日志,请前往 /home/david/20240207/Langchain-Chatchat/logs
/home/david/anaconda3/envs/chat_demo/lib/python3.11/site-packages/langchain_core/_api/deprecation.py:117: LangChainDeprecationWarning: 模型启动功能将于 Langchain-Chatchat 0.3.x重写,支持更多模式和加速启动,0.2.x中相关功能将废弃
  warn_deprecated(
2024-03-09 20:18:10 | ERROR | stderr | INFO:     Started server process [329625]
2024-03-09 20:18:10 | ERROR | stderr | INFO:     Waiting for application startup.
2024-03-09 20:18:10 | ERROR | stderr | INFO:     Application startup complete.
2024-03-09 20:18:10 | ERROR | stderr | INFO:     Uvicorn running on http://127.0.0.1:20000 (Press CTRL+C to quit)
2024-03-09 20:18:10 | INFO | model_worker | Loading the model ['chatglm3-6b'] on worker 7b784767 ...
Loading checkpoint shards:   0%|                                                                                               | 0/7 [00:00<?, ?it/s]
2024-03-09 20:18:11 | ERROR | stderr | /home/david/anaconda3/envs/chat_demo/lib/python3.11/site-packages/torch/_utils.py:831: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly.  To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()
2024-03-09 20:18:11 | ERROR | stderr |   return self.fget.__get__(instance, owner)()
Loading checkpoint shards:  14%|████████████▍                                                                          | 1/7 [00:03<00:21,  3.62s/it]
Loading checkpoint shards:  29%|████████████████████████▊                                                              | 2/7 [00:07<00:18,  3.74s/it]
Loading checkpoint shards:  43%|█████████████████████████████████████▎                                                 | 3/7 [00:08<00:10,  2.74s/it]
Loading checkpoint shards:  57%|█████████████████████████████████████████████████▋                                     | 4/7 [00:10<00:06,  2.09s/it]
Loading checkpoint shards:  71%|██████████████████████████████████████████████████████████████▏                        | 5/7 [00:11<00:03,  1.76s/it]
Loading checkpoint shards:  86%|██████████████████████████████████████████████████████████████████████████▌            | 6/7 [00:12<00:01,  1.63s/it]
Loading checkpoint shards: 100%|███████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:13<00:00,  1.31s/it]
Loading checkpoint shards: 100%|███████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:13<00:00,  1.90s/it]
2024-03-09 20:18:24 | ERROR | stderr |
2024-03-09 20:18:30 | INFO | model_worker | Register to controller
INFO:     Started server process [329963]
INFO:     Waiting for application startup.
INFO:     Application startup complete.
INFO:     Uvicorn running on http://127.0.0.1:7861 (Press CTRL+C to quit)


==============================Langchain-Chatchat Configuration==============================
操作系统:Linux-5.15.133.1-microsoft-standard-WSL2-x86_64-with-glibc2.35.
python版本:3.11.7 (main, Dec 15 2023, 18:12:31) [GCC 11.2.0]
项目版本:v0.2.10
langchain版本:0.0.354. fastchat版本:0.2.35


当前使用的分词器:ChineseRecursiveTextSplitter
当前启动的LLM模型:['chatglm3-6b'] @ cuda
{'device': 'cuda',
 'host': '127.0.0.1',
 'infer_turbo': False,
 'model_path': 'model/chatglm3-6b',
 'model_path_exists': True,
 'port': 20002}
当前Embbedings模型: m3e-base @ cuda


服务端运行信息:
    OpenAI API Server: http://127.0.0.1:20000/v1
    Chatchat  API  Server: http://127.0.0.1:7861
    Chatchat WEBUI Server: http://127.0.0.1:8501
==============================Langchain-Chatchat Configuration==============================



  You can now view your Streamlit app in your browser.

  URL: http://127.0.0.1:8501

配置成功!

常用命令:

sudo usermod -a -G sudo username        为用户添加sudo权限

取消代理

git config --global --unset http.proxy
git config --global --unset https.proxy

 10、本地浏览器打开Linux远程服务器网页

在需要进行端口转发:

ssh -L 8501:127.0.0.1:8501 llama@172.17.135.6 -N

在浏览器(推荐使用Firefox)中打开 http://localhost:8501/即可进入webUI。

ubuntu 安装langchain-chatchat,Langchain-Chatchat 学习,langchain,笔记,python,ubuntu,大数据

踩坑

1、使用 chatglm2-6b-int4 量化模型 ,启动项目报错:

AttributeError: 'NoneType' object has no attribute 'int4WeightExtractionHalf'

解决办法:文章来源地址https://www.toymoban.com/news/detail-844561.html

pip install cpm_kernels

到了这里,关于Langchain-Chatchat-Ubuntu服务器本地安装部署笔记的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • LangChain-Chatchat 开源知识库来了

    LangChain-Chatchat 是基于 ChatGLM 等大语言模型与 LangChain 等应用框架实现,开源、可离线部署的 RAG 检索增强生成大模型知识库项目。最新版本为 v0.2.10,目前已收获 26.7k Stars,非常不错的一个开源知识库项目。 项目地址:https://github.com/chatchat-space/Langchain-Chatchat 顾名思义,LangC

    2024年04月17日
    浏览(47)
  • LangChain-Chatchat学习资料-Windows开发部署

    1.LacnChain-Chatchat项目 本人使用的是Windows10专业版22H2版本,已经安装了Python3.10,CUDA11.8版本,miniconda3。 硬件采用联想R9000P,AMD R7 5800H,16G内存,RTX3060 6G。 默认依赖包括基本运行环境(FAISS向量库)。如果要使用 milvus/pg_vector 等向量库,请将 requirements.txt 中相应依赖取消注释再

    2024年02月11日
    浏览(46)
  • Langchain-Chatchat大语言模型本地知识库的踩坑、部署、使用

    Langchain-Chatchat是一个基于ChatGLM大语言模型与Langchain应用框架实现,开源、可离线部署的检索增强生成(RAG)大模型的本地知识库问答应用项目。 GitHub: https://github.com/chatchat-space/Langchain-Chatchat 本项目实现原理如下图所示,过程包括加载文件 - 读取文本 - 文本分割 - 文本向量化

    2024年02月04日
    浏览(72)
  • 【AI】Langchain-Chatchat搭建本地知识库-未完,先记录踩的坑

    事先说一下,我本地的显卡4070只有12G显存,无法运行本地知识库,我把自己折腾的过程和遇到的坑先记录一下吧,后续如果有算力的话就再跑一遍试试。后续来了:【AI】使用阿里云免费服务器搭建Langchain-Chatchat本地知识库 Langchain-Chatchat曾用名Langchain-ChatGLM,是智谱AI的本地

    2024年02月04日
    浏览(52)
  • AI-基于Langchain-Chatchat和chatglm3-6b部署私有本地知识库

    手把手教你搭建本地知识库问答AI机器人 LangChain-Chatchat:基于LangChain和ChatGLM2-6B构建本地离线私有化知识库 在家庭私有云上部署体验语言模型chatglm3-6b,打造私人助理 手把手教大家在本地运行ChatGLM3-6B大模型(一) 自从去年GPT模型火爆以来,降低了很多个人和企业进入人工智

    2024年02月20日
    浏览(65)
  • LLMs之RAG:LangChain-Chatchat(一款中文友好的全流程本地知识库问答应用)的简介(支持 FastChat 接入的ChatGLM-2/LLaMA-2等多款主流LLMs+多款embe

    LLMs之RAG:LangChain-Chatchat(一款中文友好的全流程本地知识库问答应用)的简介(支持 FastChat 接入的ChatGLM-2/LLaMA-2等多款主流LLMs+多款embedding模型m3e等+多种TextSplitter分词器)、安装(镜像部署【AutoDL云平台/Docker镜像】,离线私有部署+支持RTX3090 ,支持FAISS/Milvus/PGVector向量库, 基于

    2024年02月08日
    浏览(61)
  • ubuntu服务器配置ftp服务

    目录  一、安装vsftpd 二、配置vsftpd 三、设置安全组 四、客户端测试 SFTP服务的配置看主页的下一篇博客:ubuntu云服务器配置SFTP服务-CSDN博客 需求:配置ftp服务用于在windows电脑上直接浏览、下载、上传ubuntu服务器上的文件,用于文件共享,方便实用 效果:用户打开windows资源

    2024年02月13日
    浏览(51)
  • ubuntu 代理服务器的设置

    准备: 具备公网IP服务器(Ubuntu 18.04.4 LTS,阿里云) 本地计算机(Ubuntu 20.04 LTS) 操作: 1.在服务器安装程序tinyproxy. apt update apt install tinyproxy 2.在服务器打开配置文件 vim /etc/tinyproxy/tinyproxy.conf 3.在配置文件中查找以下参数,并进行更改 #定义监听端口,默认端口为8888,当然

    2024年02月07日
    浏览(47)
  • ubuntu部署gitlab服务器

    笔者使用的ubuntu版本为20.04,gitlab版本为16.2.1 (此篇文章部分引用他人文件,单纯记录,如有侵权请联系) 遇到图中情况点击tab跳转到确定上点击回车。 前往Gitlab官网:https://packages.gitlab.com/gitlab/gitlab-ce,找到最新版本的 gitlab-ce 安装包,注意版本是 ubuntu/focal 。 如果运行

    2024年02月05日
    浏览(55)
  • Ubuntu 配置 Samba 服务器

    手把手教程 Samba 服务器让设备之间传输文件更便捷 在 Ubuntu 16.04 和 18.04 配置 用于为root用户添加Samba密码,以便允许root用户访问Samba共享 编辑配置文件/etc/samba/smb.conf,添加服务器的共享文件夹,设置用户权限 在文件末尾添加 并且 ctrl + f 搜索 syslog,找到syslog = 0,注释掉它(

    2024年02月05日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包