Linux-进程控制

这篇具有很好参考价值的文章主要介绍了Linux-进程控制。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

🌎进程控制【上】

文章目录:

进程控制

    为什么要有地址空间和页表

    程序的内存
      程序申请内存使用问题

    写时拷贝与缺页中断

      父子进程代码共享
      为什么需要写时拷贝
      页表的权限位
      缺页中断

    退出码和错误码

      进程的退出码
      错误码

    总结


前言:

  进程控制涉及到操作系统如何管理和控制运行在计算机系统中的各个进程。那么话不多说,开启我们今天的话题!

Linux-进程控制,Linux系统编程,linux,运维,服务器


🚀为什么要有地址空间和页表

  上次我们说,进程中存在着一张张由操作系统画的 “大饼”,也就是虚拟地址空间,但是很多人并不明白为什么需要虚拟地址空间,今天我们继续听故事:

  阿熊在小的时候,每逢过年都会收到压岁钱,总的加起来对阿熊来说是一笔巨大的财富,但是这个时候,阿熊的老妈总是以帮阿熊保管为理由把压岁钱给收走了,于是阿熊一哭二闹三上吊,终于老妈做出了让步,说:“钱还是在我这里放着,但是你可以去买东西,看到什么想要的就跟我说,我给你买。” 这个时候阿熊也妥协了,那就这么办吧。
  接下来的几天,阿熊跟小伙伴出去玩,路过小卖铺,看到一款新上的零食,小伙伴拿着自己的压岁钱纷纷买了这款新零食,给阿熊分了一点点,“太好吃了,我也要买!”于是,阿熊回到家里跟老妈说:“妈,我想买个零食,要5毛钱。”老妈一想,小孩子吃一点零食很正常,也不贵,“好,钱给你,买去吧!” 于是阿熊拿着钱蹦蹦跳跳的去了小卖铺,这些天,阿熊买各种小零食、小玩具,老妈都默许了。
Linux-进程控制,Linux系统编程,linux,运维,服务器
  可是没过多久,阿熊在货架上看到了变形金刚玩具,瞬间阿熊就定在原地不走了,阿熊想了很久,于是回家跟老妈说:“老妈,我想买个玩具,要100块钱。” 老妈瞬间火气就上来了“你买了那么多玩具都还没坏,又想要新的了?我看你想找抽!” 于是阿熊不仅没能买到玩具,还吃了一顿皮带炒肉丝…

  其实,由此例子我们就能明白为什么要存在虚拟地址空间,把阿熊比作用户,把老妈比作页表,把商店比作内核数据。

  处于安全考虑,内核是不能随便被用户访问的,为了防止用户直接对内核数据操作,于是在用户和内核之间添加了页表和虚拟地址,当用户想用虚拟地址通过页表访问物理地址时,操作系统会做检测是否为非法访问,如果是则中断访问。

Linux-进程控制,Linux系统编程,linux,运维,服务器

  如果你的错误情节很严重,操作系统甚至会杀死这个进程。这也就像当我们写C语言代码不小心犯了空指针问题时,进程会直接挂掉但是并不影操作系统的原因。


🚀程序的内存

✈️程序申请内存使用问题

  我们再使用C/C++开辟内存时,使用malloc或new,那么这些开辟的空间是立马就使用吗?

  实际上,我们可以先开辟空间,但是我们并不着急使用,这种情况绝对是存在的。而操作系统给程序申请物理内存的原理如下图:

Linux-进程控制,Linux系统编程,linux,运维,服务器

  这个过程就像支票,你有支票你不一定会立马去银行换,程序空间开辟也是这个道理。

  所以,由此我们可以知道:程序申请空间实际上是从虚拟地址空间申请。这样做有以下几点好处:

  1、充分保证内存的使用率,不会空转。
  2、提升new或者malloc的速度。

  所以,我们 程序申请的空间都是虚拟地址空间,程序未访问时是被页表拦截的,而当程序真正访问这个空间时,操作系统才会在物理内存中开辟空间,重新建立虚拟地址与物理地址之间的映射关系。 这个过程我们称之为——缺页中断(Page Fault)

Linux-进程控制,Linux系统编程,linux,运维,服务器


🚀写时拷贝与缺页中断

✈️父子进程代码共享

  我们来说一说写时拷贝的问题,通常父子进程代码共享,父子不再写入时,数据也是共享的,当任意一方试图写入,便以写时拷贝的方式各自一份副本。

Linux-进程控制,Linux系统编程,linux,运维,服务器

  通过上面的图,我们就能清晰的了解:父子进程代码共享本质上是父子进程的页表映射到同一片内存区域!


✈️为什么需要写时拷贝

  在刚开始说进程这个话题的时候,我们说过操作系统向上是为了给用户提供良好的运行环境,既然如此,父进程创建子进程的时候父进程的数据并没有直接给子进程的原因也就得到了解释:

  子进程被创建时操作系统并不知道你用不用父进程的数据,就算确定使用也不确定是不是现在就用,为了尽可能不浪费资源,所以 操作系统设置只有当进程需要写入时就会发生写时拷贝。

Linux-进程控制,Linux系统编程,linux,运维,服务器

  可能有些人还有些疑惑:为什么写时拷贝,开辟空间就算了,为什么还要将原始数据再拷贝一份呢?

  我们对数据的操作无外乎就是增、删、查、改,比如原来进程中代码区有一个整形变量i = 100,这个时候子进程要对i做自增运算。
  简单来说就是对变量i进行写入操作,既然有写入操作,就会触发写时拷贝,子进程单独开辟内存,将父进程原始数据拷贝下来,如果没有拷贝,那么CPU根本就找不到需要修改的值!
  而不需要进行写入操作那么就不会触发写时拷贝,这种方式有时会大大提高程序运行速度。


✈️页表的权限位

  页表不仅仅只有虚拟地址与物理地址之间的映射,页表的每一个映射之间还存在权限位,也就是 可读可写可执行(r ,w, x)

Linux-进程控制,Linux系统编程,linux,运维,服务器
  页表中存在着权限位这一栏,为了能更好理解权限位在这里的作用,我们来看下面这段代码:

#include<stdio.h>

int main()
{
	char *str = "this is a good day!\n";
	*str = 'T';//这里我想把str字符串第一个字母大写
	return 0;
}

  这是一段很简单的C语言代码,也是很经典的错误,我们学过C语言都知道,字符串信息是放在常量区的,而常量区具有常兴不可修改,代码放在shell下运行:

Linux-进程控制,Linux系统编程,linux,运维,服务器

  不出意外,发生了段错误,那么 程序是如何知道这个字符串是常量呢?或者说 为什么常量区具有常性

  我们前面学了,程序都所占用的空间都是虚拟地址空间,而对str进行修改,本质上就是对字符串进行写入,而 写入操作会触发页表通过虚拟地址到物理地址之间的转换,但是在映射时,页表发现映射的权限位为 只读(r),于是就终止了映射

注意:

  有些小伙伴在这里可能会晕,把const和这里搞混,其实,const仅仅是在语法层面上提前设定好的,在编译阶段起作用,因为前面你在某个程序段上加了const,其实是为了后文不会对该程序进行修改操作,如果执行了修改操作,在编译阶段就编不过去,所以const是为了提前告诉你你写的代码有问题,而页表是在程序编译通过了,运行期间操作系统返回的错误。
Linux-进程控制,Linux系统编程,linux,运维,服务器
  其实加上const 属于防御性编程,在运行之前就将错误爆出来,减少程序运行时崩溃的风险。


✈️缺页中断

  上面我们提到了缺页中断,可是并没提到什么应用场景,其实缺页中断与写时拷贝也脱不了干系。

  写时拷贝我们已经很清楚了,当父子进程有一方发生写入操作时,就会触发写时拷贝,可是关键是,操作系统是用什么机制触发写时拷贝的?

Linux-进程控制,Linux系统编程,linux,运维,服务器
  当子进程已经复制父进程的页表,此时操作系统不管你原来数据的权限是什么,绝大部分数据权限都设置为 只读(r)

  当触发了写时拷贝,子进程读取到 “写入”的指令,页表就会在虚拟地址和物理地址之间做映射,而页表在检查时发现需要修改数据的权限位为只读,则发生 缺页中断,此时进程就会强制 暂停,操作系统就会在物理内存开辟空间,并且将新开辟的物理内存映射到虚拟地址,进程再继续运行,并且修改当前执行数据的权限位为:可读可写(rw)

  因为操作系统是软硬件资源的管理者,而开辟物理空间是需要操作系统参与的,程序为了让操作系统发现自己,使用了缺页中断,进程暂停 操作系统一定会来查看原因,发现正在执行写时拷贝,于是操作系统开辟物理地址重新建立映射关系,并且将修改数据权限更改。

  所以说,写时拷贝过程中,缺页中断是故意触发的,让系统出错,目的就是为了 让操作系统发现并执行接下来的步骤


🚀退出码和错误码

✈️进程的退出码

  我们不论是在写C/C++,在main函数里都会有 return 0; 这个语句,这个语句的作用是什么你是否是一知半解?

  在程序中,一般大家写函数时如何看函数的执行结果?可能有人说,把结果打印出来不就完事了吗?那么我限制不让你打印呢?你可能会说,那就 通过返回值

  没错,程序就是通过返回值来确定程序是否运行成功,bash根据程序的返回值来判断程序是否是正常运行。而一个程序的返回值我们称之为——退出码

  一般进程的退出码为0表示成功,非0表示失败

  阿熊小时候的某一天,数学考了100分,回家父亲问阿熊:“数学考了多少分啊?”,阿熊如实回答,但是父亲总不能说为什么你考了一百分吧?第二天阿熊英语成绩也出来了,回到家父亲又问:“英语考多少分啊?”阿熊说:“59分。”这是父亲问:“为什么考这么少,什么原因,是因为没发挥好还是因为考试状态不佳或者其他原因?”

  计算机世界只有0和其他数,0是特殊的,所以以0作为进程执行成功的标志,就像阿熊考了100分。而其他的数就是失败,也就是进程出问题,就像阿熊英语考试出现问题,而出问题却可能是不同的原因。所以用不同的数字来表示不同的错误原因。

  我们看下面这段代码:

#include<stdio.h>

int main()
{
	printf("Hello Axiong!\n");
	return 8;//注意返回值为8
}

Linux-进程控制,Linux系统编程,linux,运维,服务器
  我们执行代码,从打印结果来看是正常运行的程序,可是我们前面说了,一个程序是否能运行我们要看退出码,而查看退出码的命令是:

echo $?//查看最近一次进程的退出码

Linux-进程控制,Linux系统编程,linux,运维,服务器
  我们开始的结果显示是8,后面却显示未0了,其实这是因为这个命令是显示最近一次进程的退出码,除了第一次最近一次执行的进程就是这个命令的本身,所以,退出码为0。

  我们在C语言中曾经学过这个函数:

Linux-进程控制,Linux系统编程,linux,运维,服务器
  为了清晰看到函数不同退出码表示什么意思,我们来看下面的程序:
%d

#include<stdio.h>
#include<string.h>

int main()
{
	for(int i = 0; i < 200; ++i)
	{
		printf("%d :%s\n", i, strerror(i));
	}
	return 0;
}

Linux-进程控制,Linux系统编程,linux,运维,服务器
  打印出来之后,我们发现错误码一共有133个不同的错误信息。当然,这是基于Linux平台下显示的退出码,在其他平台可能会是不同的结果。

  我们来证实一下上面的错误码:

Linux-进程控制,Linux系统编程,linux,运维,服务器

  这个是系统的退出码,其实我们完全可以自己写一套适用于自己的退出码,比如下面代码:

#include<stdio.h>
#include<string.h>

enum{
	success=0,
	open_err,
	alloc_err
};

const char* errorToDesc(int code)
{
	switch(code)
	{
		case success:
			return "success";
		case open_err:
			return "file open error!";
		case alloc_err:
			return "alloc error!";
		default:
			return "unknow error";
	}
}

int main()
{
	int ind = alloc_err;
	printf("%s\n", errorToDesc(ind));

	return ind;
}

Linux-进程控制,Linux系统编程,linux,运维,服务器
  可以得出结论:main函数return返回,表示进程退出,而return跟的数字为退出码,可以设置相应退出码的信息。而其他函数退出,仅表示函数调用完毕!


✈️错误码

  除了进程退出,函数退出,我们如何知晓函数的退出情况?和main函数一样,通过返回值,调用函数,我们称为——错误码,我们通常想看到两种结果:

  1、函数的执行结果
  2、函数的执行情况

  我们在学C语言的时候,可能会见过这个函数接口:errno,用来返回错误信息,借此可以看到函数执行情况。

Linux-进程控制,Linux系统编程,linux,运维,服务器
  想要看到函数执行结果很经典的就是返回类型为 FILE* 结构体指针的函数,失败时返回NULL,成功我们并不需要太过关注,那么我们以fopen函数为例:

#include<stdio.h>
#include<unistd.h>
#include<stdlib.h>
#include<string.h>
#include<errno.h>

enum{
    success=0,
    open_err,
    alloc_err
};

const char* errorToDesc(int code)
{
    switch(code)
    {
        case success:
          return "success";
        case open_err:
          return "file open error";
        case alloc_err:
          return "malloc error";
        default:
          return "unknow error";
    }
}

int Print()
{
    printf("hello Linux\n");
    printf("hello Linux\n");
    printf("hello Linux\n");
    return 0;
}

int main()
{
    FILE *fp = fopen("./log.txt", "r");//尝试打开当前目录的文件,如果没有则返回NULL
    printf("%d:%s\n", errno, strerror(errno));//获取错误码以及错误信
    return 0;
}

Linux-进程控制,Linux系统编程,linux,运维,服务器
根据错误码我们通过调用函数也可获取相应错误信息。

  我们说了这么多,其实就是想要说进程退出时可能会发生错误,简单总结为一下三条:

  1、进程代码执行完,结果正确。
  2、进程代码执行完,结果错误。
  3、进程代码未执行完,进程异常。

  进程退出的情况,就这三种情况!


📒✏️总结

  •  我们曾使用的 C/C++ 有关内存操作全部是在 虚拟地址空间 操作的,目的是 为了内存隔离和内存管理,避免内存冲突
  •  虚拟地址与物理地址之间由 页表 建立映射关系,程序开辟空间时会发生写时拷贝,而 写时拷贝是通过缺页中断技术得以执行
  •  进程存在 退出码,根据退出码 判断进程是否执行成功,否则可以判断出了哪些问题。
  • 错误码 和退出码类似,作用对象是函数,判断函数执行失败情况,退出码和错误码可自行设置。

Linux-进程控制,Linux系统编程,linux,运维,服务器
创作不易,还望给作者一个小小的赞呀~~文章来源地址https://www.toymoban.com/news/detail-844596.html

到了这里,关于Linux-进程控制的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 华为云云耀云服务器L实例评测 | Linux系统宝塔运维部署H5游戏

    本章节内容,我们主要介绍华为云耀服务器L实例,从云服务的优势讲起,然后讲解华为云耀服务器L实例资源面板如何操作,如何使用宝塔运维服务,如何使用运维工具可视化安装nginx,最后部署一个自研的H5的小游戏(6岁的小朋友玩的很开心😁)。 前端的同学如果想把自己

    2024年02月07日
    浏览(46)
  • Linux网络编程二(TCP三次握手、四次挥手、TCP滑动窗口、MSS、TCP状态转换、多进程/多线程服务器实现)

    TCP三次握手 TCP 三次握手 (TCP three-way handshake)是TCP协议建立可靠连接的过程,确保客户端和服务器之间可以进行可靠的通信。下面是TCP三次握手的详细过程: 假设客户端为A,服务器为B 1 、第一次握手(SYN=1,seq=500) A向B发送一个带有SYN标志位的数据包,表示A请求建立连接。

    2024年02月06日
    浏览(47)
  • Linux网络编程二(TCP图解三次握手及四次挥手、TCP滑动窗口、MSS、TCP状态转换、多进程/多线程服务器实现)

    1、TCP三次握手 TCP 三次握手 (TCP three-way handshake)是 TCP协议建立可靠连接 的过程,确保客户端和服务器之间可以进行可靠的通信。下面是TCP三次握手的 详细过程 : 假设客户端为A,服务器为B。 (1) 第一次握手 第一次握手(SYN=1,seq=500) A向B发送一个带有 SYN 标志位的数据包,

    2024年04月22日
    浏览(41)
  • Linux系统编程,使用C语言实现简单的FTP(服务器/客户端)

    前言 跟着上官社长 陈哥花了一个月的时间终于把Linux系统编程学的差不多了,这一个月真的是头疼啊,各种bug,调的真心心累,不过好在问题都解决掉了,在此也感谢一下答疑老师,给我提供了很多的思路,本文章是对前段时间学习Linux,做一个小小的总结,才疏学浅,只学

    2024年02月12日
    浏览(51)
  • 运维 | 查看 Linux 服务器 IP 地址

    大多数在操作 Linux 系统时,我们经常需要知道服务器的 IP 比便于后续的一系列操作,这时候有快速查看主机 IP 的命令行操作,能够有效的帮助我们 本章节主要记录一些常用查看服务器 IP 的命令,希望对大家有所帮助。 查看 Linux 服务器的 IP 地址的命令大体上有以下几种。

    2024年04月27日
    浏览(52)
  • 【运维】Linux 跨服务器复制文件文件夹

    如果是云服务 建议用内网ip scp是secure copy的简写,用于在Linux下进行远程拷贝文件的命令,和它类似的命令有cp,不过cp只是在本机进行拷贝不能跨服务器,而且scp传输是加密的。可能会稍微影响一下速度。当你服务器硬盘变为只读 read only system时,用scp可以帮你把文件移出来

    2024年02月08日
    浏览(46)
  • 【Linux系统:进程控制】

    目录 1 进程创建 1.1 fork函数 1.2 写时拷贝 1.3 fork常规用法 1.4 fork调用失败的原因  2 进程终止 2.1 进程退出场景 2.2 进程常见退出方法  3 进程等待 3.1 进程等待必要性  3.2 进程等待的方法 3.2.1 wait方法 3.2.2 waitpid方法  3.3 获取子进程status 4 进程程序替换 4.1 替换原理 4.2 替换函数

    2023年04月09日
    浏览(26)
  • 【Linux 服务器运维】定时任务 crontab 详解 | 文末送书

    本文思维导图概述的主要内容: 1.1 什么是 crontab Crontab 是一个在 Unix 和 Linux 操作系统上 用于定时执行任务 的工具。它允许用户创建和管理计划任务,以便在特定的时间间隔或时间点自动运行命令或脚本。Crontab 是 cron table 的缩写, cron 指的是 Unix 系统中的一个后台进程,它

    2024年02月08日
    浏览(62)
  • linux并发服务器 —— 多进程并发(四)

    程序是包含一系列信息的文件,描述了如何在运行时创建一个进程; 进程是正在运行的程序的实例,可以用一个程序来创建多个进程; 用户内存空间包含程序代码以及代码所使用的变量,内核数据结构用于维护进程状态信息; 进程控制块(PCB):维护进程相关的信息,tas

    2024年02月11日
    浏览(40)
  • 操作系统课程设计-Linux 进程控制

    目录 前言 1 实验题目 2 实验目的 3 实验内容 3.1 进程的创建 3.1.1 步骤 3.1.2 关键代码 3.2 子进程执行新任务 3.2.1 步骤 3.2.2 关键代码 4 实验结果与分析 4.1 进程的创建 4.2 子进程执行新任务 5 代码 5.1 进程的创建 5.2 子进程执行新任务          本实验为课设内容,博客内容为

    2024年01月18日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包