动态规划9:最长递增子序列、最长连续递增序列、最长重复子数组、最长公共子序列、不相交的线、最长子序和

这篇具有很好参考价值的文章主要介绍了动态规划9:最长递增子序列、最长连续递增序列、最长重复子数组、最长公共子序列、不相交的线、最长子序和。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

41. 最长递增子序列

例题300:
给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

最多删除一个元素的最长连续递增子序列,动态规划,算法

动态规划

  1. 确定dp数组和下标含义
    dp[i]表示在第i个元素的最长子序列数
  2. 确定递推公式
    dp[i]应该是由dp[j]决定,也就是两层循环,第1层遍历数组每个元素,第2层遍历该元素下的子数组。
    dp[i]=Math.max(dp[i],dp[j]+1)
  3. 初始化
    dp=1
  4. 确定遍历顺序
    从前往后

代码如下:

时间复杂度O(n^2),空间复杂度O(n)
class Solution {
    public int lengthOfLIS(int[] nums) {
        int n=nums.length;
        if(n==1) return 1;
        if(n==0) return 0;
        int[] dp=new int[n];
        int res=0;
        Arrays.fill(dp,1);
        for(int i=1;i<n;i++){
            for(int j=0;j<i;j++){
                if(nums[i]>nums[j])
                {
                dp[i]=Math.max(dp[i],dp[j]+1);
                }
                res=Math.max(res,dp[i]);
            }
        }
        return res;
    }
}

进阶:时间复杂度O(nlgn)
贪心+二分法
为了让递增子序列最长,需要让子序列增长得慢。
当找到nums[i]>d[len]时,将nums[i]加入d数组;
当nums[i]<d[len]时,找到d中第一个小于nums[i]的数,将该数后一个改为nums[i]。

class Solution {
    public int lengthOfLIS(int[] nums) {
        int n=nums.length;
        if(n==1) return 1;
        if(n==0) return 0;
        int len=1;
        int[] d=new int[n+1];
        d[len]=nums[0];
        for(int i=1;i<n;i++){
            if(nums[i]>d[len]){
                len++;
                d[len]=nums[i];
            }
            else{
                int l=1,r=len,pos=0;
                while(l<=r){
                    int mid=(l+r)/2;
                    if(d[mid]<nums[i]){
                        pos=mid;
                        l=mid+1;给定一个未经排序的整数数组,找到最长且 连续递增的子序列,并返回该序列的长度。

连续递增的子序列 可以由两个下标 l 和 r(l < r)确定,如果对于每个 l <= i < r,都有 nums[i] < nums[i + 1] ,那么子序列 [nums[l], nums[l + 1], ..., nums[r - 1], nums[r]] 就是连续递增子序列。
                    }
                    else{
                        r=mid-1;
                    }
                }
                d[pos+1]=nums[i];
            }
        }
        return len;
    }
}

42. 最长连续递增序列

例题674:
给定一个未经排序的整数数组,找到最长且 连续递增的子序列,并返回该序列的长度。

连续递增的子序列 可以由两个下标 l 和 r(l < r)确定,如果对于每个 l <= i < r,都有 nums[i] < nums[i + 1] ,那么子序列 [nums[l], nums[l + 1], …, nums[r - 1], nums[r]] 就是连续递增子序列。

最多删除一个元素的最长连续递增子序列,动态规划,算法
遍历数组,碰到连续递增的更新结果,不连续递增将中间态置为1从头开始。

class Solution {
    public int findLengthOfLCIS(int[] nums) {
        int res=1;
        int t=1;
        int n=nums.length;
        if(n==1) return 1;
        if(n==0) return 0;
        for(int i=1;i<n;i++){
            if(nums[i]>nums[i-1]){
                t++;
                res=Math.max(t,res);
            }
            else{
                t=1;
            }
        }
        return res;
    }
}

43. 最长重复子数组

例题718:
给两个整数数组 nums1 和 nums2 ,返回 两个数组中 公共的 、长度最长的子数组的长度 。
最多删除一个元素的最长连续递增子序列,动态规划,算法
如果用暴力法,需要两层for循环找到开始比较的位置,再用一层for进行比较。

动态规划

  1. 确定dp数组及下标含义
    dp[i][j]表示下标i-1的数组A与下标j-1的数组B的最长公共重复子数组长度。
  2. 确定递推公式
    dp[i][j]由dp[i-1][j-1]决定,如果nums1[i]==nums2[j],那么dp[i][j]=dp[i-1][j-1]+1.
  3. 初始化
    由递推公式可以知道,i和j都从1开始遍历,那么i=0,j=0都是0.
  4. 遍历方向
    两层for循环遍历两个数组

代码如下:

class Solution {
    public int findLength(int[] nums1, int[] nums2) {
        int n1=nums1.length;
        int n2=nums2.length;
        int[][] dp=new int[n1+1][n2+1];
        int res=0;
        for(int i=0;i<n1;i++){
            dp[i][0]=0;
        }
        for(int j=0;j<n2;j++){
            dp[0][j]=0;
        }
        for(int i=1;i<=n1;i++){
            for(int j=1;j<=n2;j++){
                if(nums2[j-1]==nums1[i-1]){
                    dp[i][j]=dp[i-1][j-1]+1;
                    res=Math.max(res,dp[i][j]);
                }
            }
        }
        return res;
    }
}

44. 最长公共子序列

例题1143:
给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0 。

一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。

例如,“ace” 是 “abcde” 的子序列,但 “aec” 不是 “abcde” 的子序列。
两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。

最多删除一个元素的最长连续递增子序列,动态规划,算法
和上一题类似,不过这道题是不连续的子序列,子数组是连续的。唯一不同的就是,连续数组只有两者相等时才会+1,而不连续时,当text1[i-1]!=text2[j-1]时,当前dp[i][j]就由dp[i-1][j]和dp[i][j-1]的最大值决定。

动态规划

  1. 确定dp数组及下标含义
    dp[i][j]表示从0到i-1的字符串A和从0到j-1的字符串B的最长公共子序列长度。
  2. 确定递推公式
    dp[i][j]由dp[i-1][j-1]决定:
    ① 如果A[i-1]与B[j-1]相同,那么dp[i][j]=dp[i-1][j-1]+1
    ② 如果A[i-1]与B[j-1]不相同,那么就要看A[i-1]与B[j-2]的最长子序列长度,与A[i-2]与B[i-1]的最长长度的最大值。dp[i][j]=Math.max(dp[i-1][j],dp[i][j-1])
  3. 初始化
    i=0,j=0都为0
  4. 遍历方向
    依次遍历两个字符串

代码如下:

class Solution {
    public int longestCommonSubsequence(String text1, String text2) {
        int n1=text1.length();
        int res=0;
        int n2=text2.length();
        int[][] dp=new int[n1+1][n2+1];
        for(int i=0;i<=n1;i++){
            dp[i][0]=0;
        }
        for(int j=0;j<=n2;j++){
            dp[0][j]=0;
        }
        for(int i=1;i<=n1;i++){
            for(int j=1;j<=n2;j++){
                if(text1.charAt(i-1)==text2.charAt(j-1)){
                    dp[i][j]=dp[i-1][j-1]+1;
                }
                else{
                    dp[i][j]=Math.max(dp[i-1][j],dp[i][j-1]);
                }
                res=Math.max(res,dp[i][j]);
            }
        }
        return res;
    }
}

45. 不相交的线

例题1035:
在两条独立的水平线上按给定的顺序写下 nums1 和 nums2 中的整数。

现在,可以绘制一些连接两个数字 nums1[i] 和 nums2[j] 的直线,这些直线需要同时满足满足:

nums1[i] == nums2[j]
且绘制的直线不与任何其他连线(非水平线)相交。
请注意,连线即使在端点也不能相交:每个数字只能属于一条连线。

以这种方法绘制线条,并返回可以绘制的最大连线数。

最多删除一个元素的最长连续递增子序列,动态规划,算法
最多删除一个元素的最长连续递增子序列,动态规划,算法
这道题与上道题类似,找最长公共子序列。子序列中相对位置不改变,如果有相交的线相对位置改变就不是最长公共子序列。
难点就是把题目抽象为最长公共子序列的问题!

class Solution {
    public int maxUncrossedLines(int[] nums1, int[] nums2) {
        int n1=nums1.length;
        int res=0;
        int n2=nums2.length;
        int[][] dp=new int[n1+1][n2+1];
        for(int i=0;i<=n1;i++){
            dp[i][0]=0;
        }
        for(int j=0;j<=n2;j++){
            dp[0][j]=0;
        }
        for(int i=1;i<=n1;i++){
            for(int j=1;j<=n2;j++){
                if(nums1[i-1]==nums2[j-1]){
                    dp[i][j]=dp[i-1][j-1]+1;
                }
                else{
                    dp[i][j]=Math.max(dp[i-1][j],dp[i][j-1]);
                }
                res=Math.max(res,dp[i][j]);
            }
        }
        return res;
}
}

46. 最长子序和

例题53:
给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

子数组 是数组中的一个连续部分。

最多删除一个元素的最长连续递增子序列,动态规划,算法

class Solution {
    public int maxSubArray(int[] nums) {
        int res=nums[0];
        int t=nums[0];
        for(int i=1;i<nums.length;i++){
            t=Math.max(nums[i],t+nums[i]);
            res=Math.max(res,t);
        }
        return res;
    }
}

动态规划

  1. 确定dp数组及下标含义
    dp[i]表示从0到第i-1个元素的最大和。
  2. 确定递推公式
    dp[i]由dp[i-1]决定
    dp[i]=Math.max(nums[i],nums[i]+dp[i-1])
  3. 初始化
    dp[0]=nums[0]
  4. 遍历方向
    从前往后

代码如下:文章来源地址https://www.toymoban.com/news/detail-844669.html

class Solution {
    public int maxSubArray(int[] nums) {
if (nums.length == 0) {
            return 0;
        }
        int res = nums[0];
        int[] dp = new int[nums.length];
        dp[0] = nums[0];
        for (int i = 1; i < nums.length; i++) {
            dp[i] = Math.max(dp[i - 1] + nums[i], nums[i]);
            res = res > dp[i] ? res : dp[i];
        }
        return res;
    }
}

到了这里,关于动态规划9:最长递增子序列、最长连续递增序列、最长重复子数组、最长公共子序列、不相交的线、最长子序和的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 算法刷题Day 52 最长递增子序列+最长连续递增子序列+最长重复子数组

    我自己想出来的方法,时间复杂度应该是 O(n2) 滑动窗口 连续的话,可以考虑用滑动窗口 动态规划 贪心算法

    2024年02月14日
    浏览(54)
  • 两个数组的动态规划——最长公共子序列模型

    1.考虑空串,即dp表多出一行一列, 代表某个字符串为空。 2.考虑最后一个位置;是否相等; 3.可在字符串最前面加虚拟位置以对应映射关系; 4.一般横行是j,列是i。此时第一行代表第二个字符串不为空,即第一个字符串是空的 给你两个字符串  s   和  t  ,统计并返回在

    2024年03月10日
    浏览(65)
  • 算法 DAY52 动态规划10 1143.最长公共子序列 1035.不相交的线 53. 最大子数组和

    本题和动态规划:718. 最长重复子数组 (opens new window)区别在于这里不要求是连续的了 1、dp数组 dp[i][j]:长度为[0, i - 1]的字符串text1与长度为[0, j - 1]的字符串text2的最长公共子序列为dp[i][j] 2、递推公式 因为不强调是连续的,当前dp[i][j] 就有三种路径可以选:dp[i-1][j] dp[i][j-1]

    2024年02月03日
    浏览(64)
  • 最长重复子数组,最大子序和,最长公共子序列

    欢迎批评指正!

    2024年04月13日
    浏览(61)
  • 动态规划之最长递增子序列

    leetcode 300 最长递增子序列 1.定义dp数组:dp[i]表示以nums[i]结尾的最长递增子序列的长度。 2.定义递推公式 dp[i] = max(dp[j] + 1, dp[i]) 因为dp[j] + 1中的dp[j]并非是在前一个已经加1的dp[j]的基础之上再加上1。若从初始状态加1,而dp[i]永远保持的是最大的状态,则dp[j] + 1肯定要小一些。

    2024年01月23日
    浏览(45)
  • 动态规划算法 | 最长递增子序列

    通过查阅相关资料 发现动态规划问题一般就是求解最值问题 。这种方法在解决一些问题时应用比较多,比如求最长递增子序列等。 有部分人认为动态规划的核心就是:穷举。因为要求最值,肯定要把所有可行的答案穷举出来,然后在其中找最值。 首先,笔者认为动态规划中

    2024年02月06日
    浏览(54)
  • 力扣--动态规划300.最长递增子序列

    一开始想到的方法非常低效,但好理解。   思路分析: 使用二维数组 dp 来记录递增子序列的长度信息,其中 dp[i][0] 表示以 nums[i] 结尾的最长递增子序列的长度, dp[i][1] 表示包含 nums[i] 的最长递增子序列的长度。 初始化 dp 数组,将以第一个元素结尾的递增子序列长度置为

    2024年01月24日
    浏览(49)
  • 【动态规划】求最长递增子序列问题

    最长递增子序列(Longest Increasing Subsequence, LIS ) 子序列:对于任意序列s,它的子序列是通过删除其中零个或多个元素得到的另⼀个序列 注:剩余元素的相对顺序保持不变 给定n个整数组成的序列 s [ 1... n ] s[1...n] s [ 1... n ] ,求最长递增子序列LIS(的长度) 8 3 6 1 3 5 4 7 假设

    2024年02月03日
    浏览(49)
  • 【算法设计与分析】(三)动态规划_更新中:斐波那契、二项式系数、树的最大独立集、最长递增、公共子序列、编辑距离、Hischberg、最优二叉搜索树、交替拿硬币、石子合并、背包、乘电梯

    分治 动态规划本篇 还差一堆 贪心 网络流 首先,怕误人子弟必须声明一下 本人很菜 (越复习越觉得完蛋了 作为一个科班研究生算法学成这样非常惭愧(跪 ,可能写的都不是很懂,很多内容打算背过去了。因为我发现好像真的有人看所以多提醒一句。。(大家就只食用目录

    2024年01月19日
    浏览(98)
  • 【学会动态规划】最长递增子序列的个数(28)

    目录 动态规划怎么学? 1. 题目解析 2. 算法原理 1. 状态表示 2. 状态转移方程 3. 初始化 4. 填表顺序 5. 返回值 3. 代码编写 写在最后: 学习一个算法没有捷径,更何况是学习动态规划, 跟我一起刷动态规划算法题,一起学会动态规划! 这道题的题目非常好理解,就是求出最长

    2024年02月11日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包