10-用PySpark建立第一个Spark RDD

这篇具有很好参考价值的文章主要介绍了10-用PySpark建立第一个Spark RDD。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


PySpark实战笔记系列第一篇
10-用PySpark建立第一个Spark RDD,PySpark学习库,大数据,pyspark


RDD概念

Apache Spark的核心组件的基础是RDD。所谓的RDD,即弹性分布式数据集(Resiliennt Distributed Datasets),基于RDD可以实现Apache Spark各个组件在多个计算机组成的集群中进行无缝集成,从而能够在一个应用程序中完成海量数据处理。

RDD特点

  • 只读不能修改:只能通过转换操作生成一个新的RDD。
  • 分布式存储:一个RDD通过分区可以分布在多台机器上进行并行数据处理。
  • 内存计算:可以将全部或部分数据缓存在内存中,且可在多次计算过程中重用。
  • 具有弹性:在计算过程中,当内存不足时,可以将一部分数据落到磁盘上处理

建立RDD的方式

  • 用parallelize方法建立RDD:这种方式非常简单,主要用于进行练习或者测试
  • 用range方法建立RDD:这种方式和parallelize方法类似,一般来说主要用于进行测试
  • 使用textFile方法建立RDD:这种方式一般用于在本地临时性地处理一些存储了大量数据的文件。它依赖本地文件系统,因此可以不需要Hadoop环境。
  • 使用HDFS建立RDD:这种方式使用HDFS文件建立RDD,需要依赖Hadoop集群环境,它应该是最常用的一种生产环境下的数据处理方式。它可以针对HDFS上存储的海量数据,进行离线批处理操作。

不同工具建立RDD的方式

使用PySpark Shell(交互环境)建立RDD

在安装完成Spark环境后,就具备了Shell这款工具。其中,Spark Shell是针对Scala语言的,而PySpark Shell则是针对Python语言的。

使用PySpark Shell工具的方式,在命令行输入如下命令:pyspark

PySpark Shell默认会自动创建sc对象和spark对象,因此可以在交互环境中直接进行调用,而无须手动创建。这里,sc对象是SparkContext的实例,而spark对象是SparkSession的实例。

10-用PySpark建立第一个Spark RDD,PySpark学习库,大数据,pyspark

使用VSCode编程建立RDD

在VSCode中以编程方式需要手动创建SparkContext实例。

  • 首先需要用from pyspark import SparkConf, SparkContext导入SparkConf和SparkContext。
  • conf=SparkConf().setAppName(“WordCount”).setMaster("local[**]")**创建了一个SparkConf实例,其中用setAppName设置了本次程序的名称,用setMaster设置了Spark Master的方式为local[]。
  • **sc=SparkContext(conf=conf)**创建SparkContext实例sc,这与PySparkShell默认创建的sc对象类似。
  • SparkContext不能一次运行多个,否则会报ValueError: Cannot run multipleSparkContexts at once; existing SparkContext的错误。因此需要用sc.stop()命令关闭SparkContext实例对象。

需要用pip3 install findspark命令安装findspark,否则可能会提示无法找到pyspark模块的错误:ModuleNotFoundError: No module named ‘pyspark’。

示例界面:

10-用PySpark建立第一个Spark RDD,PySpark学习库,大数据,pyspark

使用Jupyter Notebook建立RDD

编码方式类似VS Code,不过它的好处是

  • 可以对多个代码以文件的形式进行组织,
  • 可以用于编写文档。
  • 更高级的是可以显示图形和运算结果。
  • 因此使用这种基于Web的部署方式,可以让多个客户端同时使用,且可共享代码示例,真正做到图文并茂地进行编程。

总结

** 1.sc对象的两种创建方式:**

"""
方式一:通过SparkConf创建
"""
from pyspark import SparkConf,SparkContext
# 创建SparkContext,即sc对象
conf = SparkConf().setAppName("Demo")\
				  .setMaster("local[*]")
sc = SparkContext(conf=conf)
"""
方式二:通过SparkSession创建
"""
from pyspark.sql import SparkSession
spark = SparkSession.builder \
					.master("local[*]") \
					.appName("Demo")	\
					.getOrCreate();
# 创建SparkContext,即sc对象
sc = spark.sparkContext

2.完整的常用pyspark编程开头示例

根据上述两种sc的创建方式,对应的常用的编程开头方式即在上述样例的开头,加上如下代码:

import findspark
findspark.init()

参考资料:《Python大数据处理库PySpark实战》文章来源地址https://www.toymoban.com/news/detail-844719.html

到了这里,关于10-用PySpark建立第一个Spark RDD的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【Python】PySpark 数据计算 ⑤ ( RDD#sortBy方法 - 排序 RDD 中的元素 )

    RDD#sortBy 方法 用于 按照 指定的 键 对 RDD 中的元素进行排序 , 该方法 接受一个 函数 作为 参数 , 该函数从 RDD 中的每个元素提取 排序键 ; 根据 传入 sortBy 方法 的 函数参数 和 其它参数 , 将 RDD 中的元素按 升序 或 降序 进行排序 , 同时还可以指定 新的 RDD 对象的 分区数 ; RDD

    2024年02月14日
    浏览(41)
  • 【Python】PySpark 数据计算 ② ( RDD#flatMap 方法 | RDD#flatMap 语法 | 代码示例 )

    RDD#map 方法 可以 将 RDD 中的数据元素 逐个进行处理 , 处理的逻辑 需要用外部 通过 参数传入 map 函数 ; RDD#flatMap 方法 是 在 RDD#map 方法 的基础上 , 增加了 \\\" 解除嵌套 \\\" 的作用 ; RDD#flatMap 方法 也是 接收一个 函数 作为参数 , 该函数被应用于 RDD 中的每个元素及元素嵌套的子元素

    2024年02月14日
    浏览(36)
  • 【Python】PySpark 数据输入 ① ( RDD 简介 | RDD 中的数据存储与计算 | Python 容器数据转 RDD 对象 | 文件文件转 RDD 对象 )

    RDD 英文全称为 \\\" Resilient Distributed Datasets \\\" , 对应中文名称 是 \\\" 弹性分布式数据集 \\\" ; Spark 是用于 处理大规模数据 的 分布式计算引擎 ; RDD 是 Spark 的基本数据单元 , 该 数据结构 是 只读的 , 不可写入更改 ; RDD 对象 是 通过 SparkContext 执行环境入口对象 创建的 ; SparkContext 读取数

    2024年02月14日
    浏览(42)
  • 【Python】PySpark 数据计算 ③ ( RDD#reduceByKey 函数概念 | RDD#reduceByKey 方法工作流程 | RDD#reduceByKey 语法 | 代码示例 )

    RDD#reduceByKey 方法 是 PySpark 中 提供的计算方法 , 首先 , 对 键值对 KV 类型 RDD 对象 数据 中 相同 键 key 对应的 值 value 进行分组 , 然后 , 按照 开发者 提供的 算子 ( 逻辑 / 函数 ) 进行 聚合操作 ; 上面提到的 键值对 KV 型 的数据 , 指的是 二元元组 , 也就是 RDD 对象中存储的数据是

    2024年02月14日
    浏览(51)
  • 【Python】PySpark 数据计算 ① ( RDD#map 方法 | RDD#map 语法 | 传入普通函数 | 传入 lambda 匿名函数 | 链式调用 )

    在 PySpark 中 RDD 对象 提供了一种 数据计算方法 RDD#map 方法 ; 该 RDD#map 函数 可以对 RDD 数据中的每个元素应用一个函数 , 该 被应用的函数 , 可以将每个元素转换为另一种类型 , 也可以针对 RDD 数据的 原始元素进行 指定操作 ; 计算完毕后 , 会返回一个新的 RDD 对象 ; map 方法 , 又

    2024年02月14日
    浏览(54)
  • PySpark基础 —— RDD

    1.查看Spark环境信息 2.创建RDD 创建RDD主要有两种方式 第一种:textFile方法 第二种:parallelize方法  2.1.textFile方法 本地文件系统加载数据  2.2.parallelize方法  2.3.wholeTextFiles方法 Action动作算子/行动操作 1.collect 2.take  3.first 4.top 5.takeOrdered 6.takeSample 7.count 8.sum 9.histogram 10.fold 11.re

    2024年02月07日
    浏览(39)
  • PySpark RDD的缓存和Checkpoint

    RDD之间进行相互迭代计算(Transformation的转换),当执行开启后,新RDD的生成,代表老RDD的消息,RDD的数据只在处理的过程中存在,一旦处理完成,就不见了,所以RDD的数据是过程数据。 RDD数据是过程数据的这个特性可以最大化的利用资源,老旧的RDD没用了就会从内存中清理

    2023年04月09日
    浏览(78)
  • PySpark之RDD的持久化

    当RDD被重复使用,或者计算该RDD比较容易出错,而且需要消耗比较多的资源和时间的时候,我们就可以将该RDD缓存起来。 主要作用: 提升Spark程序的计算效率 注意事项: RDD的缓存可以存储在内存或者是磁盘上,甚至可以存储在Executor进程的堆外内存中。主要是放在内存中,因此

    2024年01月23日
    浏览(42)
  • spark之action算子学习笔记(scala,pyspark双语言)

    函数签名:def collect(): Array[T] 功能说明:收集每个分区数据,以数组Array的形式封装后发给driver。设置driver内存:bin/spark-submit --driver-memory 10G(内存大小) 注意:collect会把所有分区的数据全部拉取到driver端,如果数据量过大,可能内存溢出。 图1 结果 图2 结果 返回RDD中元素的

    2024年02月04日
    浏览(45)
  • Python大数据之PySpark(三)使用Python语言开发Spark程序代码

    Spark Standalone的PySpark的搭建----bin/pyspark --master spark://node1:7077 Spark StandaloneHA的搭建—Master的单点故障(node1,node2),zk的leader选举机制,1-2min还原 【scala版本的交互式界面】bin/spark-shell --master xxx 【python版本交互式界面】bin/pyspark --master xxx 【提交任务】bin/spark-submit --master xxxx 【学

    2024年01月17日
    浏览(53)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包