YOLOv8改进 | 图像去雾 | 利用图像去雾网络UnfogNet辅助YOLOv8进行图像去雾检测(全网独家首发)

这篇具有很好参考价值的文章主要介绍了YOLOv8改进 | 图像去雾 | 利用图像去雾网络UnfogNet辅助YOLOv8进行图像去雾检测(全网独家首发)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、本文介绍

本文给大家带来的改进机制是利用UnfogNet超轻量化图像去雾网络,我将该网络结合YOLOv8针对图像进行去雾检测(也适用于一些模糊场景),我将该网络结构和YOLOv8的网络进行结合同时该网络的结构的参数量非常的小,我们将其添加到模型里增加的计算量和参数量基本可以忽略不计这是非常难得的,因为其也算是一种图像增强算法,同时本文的内容不影响其它的模块改进可以作为工作量凑近大家的论文里,非常的适用,图像去雾检测为群友最近提出的需要的改进

欢迎大家订阅我的专栏一起学习YOLO! 

YOLOv8改进 | 图像去雾 | 利用图像去雾网络UnfogNet辅助YOLOv8进行图像去雾检测(全网独家首发),YOLOv8有效涨点专栏,YOLO,人工智能,深度学习,计算机视觉,目标检测,pytorch,python

 专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备   


目录

文章来源地址https://www.toymoban.com/news/detail-845009.html

到了这里,关于YOLOv8改进 | 图像去雾 | 利用图像去雾网络UnfogNet辅助YOLOv8进行图像去雾检测(全网独家首发)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包