代码随想录 动态规划-子序列问题-子序列(连续)

这篇具有很好参考价值的文章主要介绍了代码随想录 动态规划-子序列问题-子序列(连续)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

674.最长连续递增序列 

718.最长重复子数组

53.最大子数组和 


674.最长连续递增序列 

674. 最长连续递增序列

简单

给定一个未经排序的整数数组,找到最长且 连续递增的子序列,并返回该序列的长度。

连续递增的子序列 可以由两个下标 l 和 rl < r)确定,如果对于每个 l <= i < r,都有 nums[i] < nums[i + 1] ,那么子序列 [nums[l], nums[l + 1], ..., nums[r - 1], nums[r]] 就是连续递增子序列。

示例 1:

输入:nums = [1,3,5,4,7]
输出:3
解释:最长连续递增序列是 [1,3,5], 长度为3。
尽管 [1,3,5,7] 也是升序的子序列, 但它不是连续的,因为 5 和 7 在原数组里被 4 隔开。 

示例 2:

输入:nums = [2,2,2,2,2]
输出:1
解释:最长连续递增序列是 [2], 长度为1。

提示:

  • 1 <= nums.length <= 104
  • -109 <= nums[i] <= 109

动规五部曲分析如下:

确定dp数组(dp table)以及下标的含义

dp[i]:以下标i为结尾的连续递增的子序列长度为dp[i]

注意这里的定义,一定是以下标i为结尾,并不是说一定以下标0为起始位置。

确定递推公式

如果 nums[i] > nums[i - 1],那么以 i 为结尾的连续递增的子序列长度 一定等于 以i - 1为结尾的连续递增的子序列长度 + 1 。

即:dp[i] = dp[i - 1] + 1;

注意这里就体现出和动态规划:300.最长递增子序列 (opens new window)的区别!

因为本题要求连续递增子序列,所以就只要比较nums[i]与nums[i - 1],而不用去比较nums[j]与nums[i] (j是在0到i之间遍历)。

既然不用j了,那么也不用两层for循环,本题一层for循环就行,比较nums[i] 和 nums[i - 1]。

这里大家要好好体会一下!

dp数组如何初始化

以下标i为结尾的连续递增的子序列长度最少也应该是1,即就是nums[i]这一个元素。

所以dp[i]应该初始1;

确定遍历顺序

从递推公式上可以看出, dp[i + 1]依赖dp[i],所以一定是从前向后遍历。

本文在确定递推公式的时候也说明了为什么本题只需要一层for循环,代码如下:

for (int i = 1; i < nums.size(); i++) {
    if (nums[i] > nums[i - 1]) { // 连续记录
        dp[i] = dp[i - 1] + 1;
    }
}

举例推导dp数组

已输入nums = [1,3,5,4,7]为例,dp数组状态如下:

代码随想录 动态规划-子序列问题-子序列(连续),代码随想录,算法,数据结构,leetcode,动态规划

注意这里要取dp[i]里的最大值,所以dp[2]才是结果!

class Solution {  
    // 求解最长连续递增子序列的长度  
    public int findLengthOfLCIS(int[] nums) {  
        // 创建一个与输入数组长度相同的dp数组,用于保存以当前元素结尾的最长连续递增子序列的长度  
        int[] dp = new int[nums.length];  
          
        // 初始化dp数组,每个元素的最长连续递增子序列至少包含自身,所以初始长度为1  
        for(int i = 0; i < nums.length; i++){  
            dp[i] = 1;  
        }  
          
        // 初始化结果变量,至少为1(因为每个元素本身就是一个长度为1的连续递增子序列)  
        int result = 1;  
          
        // 遍历数组中的每个元素  
        for(int i = 1; i < nums.length; i++){  
            // 如果当前元素大于前一个元素,说明可以形成连续递增子序列  
            if(nums[i - 1] < nums[i]){  
                // 更新以当前元素结尾的最长连续递增子序列长度,即前一个元素的最长连续递增子序列长度加1  
                dp[i] = dp[i - 1] + 1;  
            }  
            // 更新全局的最长连续递增子序列长度  
            result = Math.max(result, dp[i]);  
        }  
          
        // 返回最长连续递增子序列的长度  
        return result;  
    }  
}

718.最长重复子数组

718. 最长重复子数组

中等

提示

给两个整数数组 nums1 和 nums2 ,返回 两个数组中 公共的 、长度最长的子数组的长度 

示例 1:

输入:nums1 = [1,2,3,2,1], nums2 = [3,2,1,4,7]
输出:3
解释:长度最长的公共子数组是 [3,2,1] 。

示例 2:

输入:nums1 = [0,0,0,0,0], nums2 = [0,0,0,0,0]
输出:5

提示:

  • 1 <= nums1.length, nums2.length <= 1000
  • 0 <= nums1[i], nums2[i] <= 100

动规五部曲分析如下:

确定dp数组(dp table)以及下标的含义

dp[i][j] :以下标i - 1为结尾的A,和以下标j - 1为结尾的B,最长重复子数组长度为dp[i][j]。 (特别注意: “以下标i - 1为结尾的A” 标明一定是 以A[i-1]为结尾的字符串

为什么是i - 1为结尾,因为以i结尾在初始化数组的时候有困难

此时细心的同学应该发现,那dp[0][0]是什么含义呢?总不能是以下标-1为结尾的A数组吧。

其实dp[i][j]的定义也就决定着,我们在遍历dp[i][j]的时候i 和 j都要从1开始。

确定递推公式

根据dp[i][j]的定义,dp[i][j]的状态只能由dp[i - 1][j - 1]推导出来。

即当A[i - 1] 和B[j - 1]相等的时候,dp[i][j] = dp[i - 1][j - 1] + 1;

根据递推公式可以看出,遍历i 和 j 要从1开始!

dp数组如何初始化

根据dp[i][j]的定义,dp[i][0] 和dp[0][j]其实都是没有意义的!

但dp[i][0] 和dp[0][j]要初始值,因为 为了方便递归公式dp[i][j] = dp[i - 1][j - 1] + 1;

所以dp[i][0] 和dp[0][j]初始化为0。

举个例子A[0]如果和B[0]相同的话,dp[1][1] = dp[0][0] + 1,只有dp[0][0]初始为0,正好符合递推公式逐步累加起来。

确定遍历顺序

外层for循环遍历A,内层for循环遍历B。

那又有同学问了,外层for循环遍历B,内层for循环遍历A。不行么?

也行,一样的,我这里就用外层for循环遍历A,内层for循环遍历B了。

同时题目要求长度最长的子数组的长度。所以在遍历的时候顺便把dp[i][j]的最大值记录下来。

代码如下:

for (int i = 1; i <= nums1.size(); i++) {
    for (int j = 1; j <= nums2.size(); j++) {
        if (nums1[i - 1] == nums2[j - 1]) {
            dp[i][j] = dp[i - 1][j - 1] + 1;
        }
        if (dp[i][j] > result) result = dp[i][j];
    }
}

举例推导dp数组

这个图贼重要,一秒看懂

拿示例1中,A: [1,2,3,2,1],B: [3,2,1,4,7]为例,画一个dp数组的状态变化,如下:

代码随想录 动态规划-子序列问题-子序列(连续),代码随想录,算法,数据结构,leetcode,动态规划

class Solution {  
    // 求解两个数组的最长公共子序列的长度  
    public int findLength(int[] nums1, int[] nums2) {  
        // 创建一个二维dp数组,大小为(nums1.length + 1) x (nums2.length + 1)  
        // dp[i][j] 表示nums1的前i个元素和nums2的前j个元素的最长公共子序列的长度  
        int[][] dp = new int[nums1.length + 1][nums2.length + 1];  
          
        int result = 0; // 用于保存最长公共子序列的长度  
          
        // 遍历nums1的每个元素  
        for(int i = 1; i <= nums1.length; i++){  
            // 遍历nums2的每个元素  
            for(int j = 1; j <= nums2.length; j++){  
                // 如果nums1的第i个元素和nums2的第j个元素相等  
                if(nums1[i - 1] == nums2[j - 1]){  
                    // 当前位置的最长公共子序列长度等于左上方位置的最长公共子序列长度加1  
                    dp[i][j] = dp[i - 1][j - 1] + 1;  
                }  
                // 更新最长公共子序列的长度  
                result = Math.max(result, dp[i][j]);  
            }  
        }  
          
        // 返回最长公共子序列的长度  
        return result;  
    }  
}

53.最大子数组和 

53. 最大子数组和

中等

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

子数组

是数组中的一个连续部分。

示例 1:

输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。

示例 2:

输入:nums = [1]
输出:1

示例 3:

输入:nums = [5,4,-1,7,8]
输出:23

提示:

  • 1 <= nums.length <= 105
  • -104 <= nums[i] <= 104

动规五部曲如下:

确定dp数组(dp table)以及下标的含义

dp[i]:包括下标i(以nums[i]为结尾)的最大连续子序列和为dp[i]

确定递推公式

dp[i]只有两个方向可以推出来:

dp[i - 1] + nums[i],即:nums[i]加入当前连续子序列和

nums[i],即:从头开始计算当前连续子序列和

一定是取最大的,所以dp[i] = max(dp[i - 1] + nums[i], nums[i]);

dp数组如何初始化

从递推公式可以看出来dp[i]是依赖于dp[i - 1]的状态,dp[0]就是递推公式的基础。

dp[0]应该是多少呢?

根据dp[i]的定义,很明显dp[0]应为nums[0]即dp[0] = nums[0]。

确定遍历顺序

递推公式中dp[i]依赖于dp[i - 1]的状态,需要从前向后遍历。

举例推导dp数组

以示例一为例,输入:nums = [-2,1,-3,4,-1,2,1,-5,4],对应的dp状态如下: 

代码随想录 动态规划-子序列问题-子序列(连续),代码随想录,算法,数据结构,leetcode,动态规划

注意最后的结果可不是dp[nums.size() - 1]! ,而是dp[6]。

在回顾一下dp[i]的定义:包括下标i之前的最大连续子序列和为dp[i]。

那么我们要找最大的连续子序列,就应该找每一个i为终点的连续最大子序列。

所以在递推公式的时候,可以直接选出最大的dp[i]。文章来源地址https://www.toymoban.com/news/detail-845051.html

class Solution {  
    // 定义一个公共方法,用于计算给定数组中的最大子数组和  
    public int maxSubArray(int[] nums) {  
        // 如果数组为空,直接返回0  
        if(nums.length == 0){  
            return 0;  
        }  
  
        // 定义一个动态规划数组dp,其长度与原始数组nums相同  
        // dp[i]表示以nums[i]为结尾的最大子数组和  
        int dp[] = new int[nums.length];  
  
        // 初始化dp数组的第一个元素为nums的第一个元素  
        dp[0] = nums[0];  
  
        // 初始化result为nums的第一个元素,因为最大子数组和至少为nums的某个元素  
        int result = nums[0];  
  
        // 从数组的第二个元素开始遍历  
        for(int i = 1; i < nums.length; i++){  
            // 对于每个位置i,有两种情况:  
            // 1. 如果nums[i]自己作为子数组的和更大,那么dp[i] = nums[i]  
            // 2. 否则,将nums[i]加到前面的最大子数组和dp[i-1]上,得到新的dp[i]  
            dp[i] = Math.max(dp[i - 1] + nums[i], nums[i]);  
  
            // 更新result,如果dp[i]比当前的result大,则更新result为dp[i]  
            result = Math.max(dp[i], result);  
        }  
  
        // 返回最大子数组和  
        return result;  
    }  
}

到了这里,关于代码随想录 动态规划-子序列问题-子序列(连续)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 代码随想录 动态规划-基础题目

    目录 509.斐波那契数  70.爬楼梯 746.使用最小花费爬楼梯 62.不同路径 63.不同路径|| 343.整数拆分 96.不同的二叉树 509. 斐波那契数 简单 斐波那契数  (通常用  F(n)  表示)形成的序列称为  斐波那契数列  。该数列由  0  和  1  开始,后面的每一项数字都是前面两项数字的和

    2024年03月18日
    浏览(77)
  • 代码随想录 Day35 动态规划04 01背包问题和完全背包问题 LeetCode T416 分割等和子集

    说到背包问题大家都会想到使用动规的方式来求解,那么为什么用动规呢, dp数组代表什么呢 ? 初始化是什么 , 遍历方式又是什么 ,这篇文章笔者将详细讲解背包问题的经典例题0-1背包问题和完全背包问题的解题方式,希望能帮助到大家 有人一提到背包问题就只会使用动态规划来

    2024年02月06日
    浏览(76)
  • 动态规划例题(代码随想录学习)——持续更新

    dp[i][j]的含义是:从(0,0)到(i,j)的不同路径 当路线中有了障碍,此路不通,所以在不同路径的递推公式上需要增加条件 if(obs[i,j]==0)没有障碍,dp[i][j]= dp[i-1][j]+dp[i][j-1] if(obs[i][j]==1)有障碍,不进行推导 obs数组表示障碍 障碍的后面应该是0(原因:遇到障碍后,即

    2024年04月12日
    浏览(44)
  • 二刷代码随想录——动态规划day40

    一个本硕双非的小菜鸡,备战24年秋招,计划二刷完卡子哥的刷题计划,加油! 二刷决定精刷了,于是参加了卡子哥的刷题班,训练营为期60天,我一定能坚持下去,迎来两个月后的脱变的,加油! 推荐一手卡子哥的刷题网站,感谢卡子哥。代码随想录 终于来到了守关boss。

    2024年03月11日
    浏览(57)
  • 代码随想录第41天 | 动态规划part03

    ● 343. 整数拆分 ● 96.不同的二叉搜索树 题目一 343. 整数拆分 给定一个正整数 n,将其拆分为至少两个正整数的和,并使这些整数的乘积最大化。 返回你可以获得的最大乘积。 示例 : 输入: 10 输出: 36 解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36。 说明: 你可以假设 n 不小于 2 且不大于 5

    2024年01月24日
    浏览(52)
  • 代码随想录算法训练51 | 动态规划part12

    本题加了一个冷冻期,状态就多了,有点难度,大家要把各个状态分清,思路才能清晰  视频讲解: 动态规划来决定最佳时机,这次有冷冻期!| LeetCode:309.买卖股票的最佳时机含冷冻期_哔哩哔哩_bilibili 代码随想录 相对122.买卖股票的最佳时机II ,本题只需要在计算卖出操

    2024年01月18日
    浏览(55)
  • 代码随想录Day41:动态规划Part3

    讲解前: 毫无头绪 讲解后: 这道题的动态思路一开始很不容易想出来,虽然dp数组的定义如果知道是动态规划的话估摸着可以想出来那就是很straight forward dp定义:一维数组dp[i], i 代表整数的值,dp[i] 代表将整数 i 拆分的话可以获得的最大乘积 然后呢就是定义递归推导式了,

    2024年04月27日
    浏览(43)
  • 【每日刷题】动态规划-代码随想录动规-8、9

    题目链接 dp数组含义 :dp[i]表示拆分i的最大乘积 递推公式 :dp[i]= max(j*(i-j), j*dp[i-j], dp[i]) 解释:从1遍历j,有两种渠道得到dp[i]. 一个是j * (i - j) 直接相乘。 一个是j * dp[i - j],相当于是拆分(i - j) 为何不拆分j:j是从1开始遍历,拆分j的情况,在遍历j的过程中其实都计算过了

    2024年02月02日
    浏览(50)
  • 代码随想录 day38 第九章 动态规划part01

    ●  理论基础 ●  509. 斐波那契数 ●  70. 爬楼梯 ●  746. 使用最小花费爬楼梯 理论基础 解决动态规划必须要想清楚的点 dp数组以及下标的含义 递推公式 dp数组如何初始化 遍历顺序 打印数组 检查结果 关联 leetcode 509. 斐波那契数 思路 动规五部曲 dp数组以及下标的含义

    2024年04月17日
    浏览(50)
  • 【代码随想录】Day 49 动态规划10 (买卖股票Ⅰ、Ⅱ)

    https://leetcode.cn/problems/best-time-to-buy-and-sell-stock/ dp[i]表示在第i天时,卖/不卖股票能获得的最大利润: 1、卖股票:dp[i] = prices[i] -minPrice(i天以前的最低价格) 2、不卖股票:dp[i] = dp[i-1](因为不卖股票,所以状态和前一天保持一致) ∴dp[i] = max(dp[i-1], prices[i] - minPrice); https

    2024年02月09日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包