【深度学习】环境搭建ubuntu22.04

这篇具有很好参考价值的文章主要介绍了【深度学习】环境搭建ubuntu22.04。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

清华官网的conda源
https://mirrors.tuna.tsinghua.edu.cn/help/anaconda/
安装torch
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
2.2.2
【深度学习】环境搭建ubuntu22.04,深度学习,深度学习,人工智能
conda install 指引看这里:
ref:https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#package-manager-metas
invidia toolkit的指引在这里,看起来,driver和toolkit合二为一了,一步到位。
https://developer.nvidia.com/cuda-downloads?target_os=Linux&target_arch=x86_64&Distribution=Ubuntu&target_version=22.04&target_type=deb_network
cudann安装:https://docs.nvidia.com/deeplearning/cudnn/installation/linux.html

报错:https://forums.developer.nvidia.com/t/verify-cudnn-install-failed/167220
(base) justin@justin-System-Product-Name:/usr/src/cudnn_samples_v9/mnistCUDNN$ sudo make
CUDA_VERSION is 12040
Linking agains cublasLt = true
CUDA VERSION: 12040
TARGET ARCH: x86_64
HOST_ARCH: x86_64
TARGET OS: linux
SMS: 50 53 60 61 62 70 72 75 80 86 87 90
test.c:1:10: fatal error: FreeImage.h: No such file or directory
1 | #include “FreeImage.h”

解决方案:https://forums.developer.nvidia.com/t/verify-cudnn-install-failed/167220/4

cudnn测试通过,它被安装在了src下。cp一份sample到home下:


(base) justin@justin-System-Product-Name:~/cudnn_samples_v9/mnistCUDNN$ ./mnistCUDNN
Executing: mnistCUDNN
cudnnGetVersion() : 90000 , CUDNN_VERSION from cudnn.h : 90000 (9.0.0)
Host compiler version : GCC 11.4.0

There are 1 CUDA capable devices on your machine :
device 0 : sms 128  Capabilities 8.9, SmClock 2520.0 Mhz, MemSize (Mb) 24188, MemClock 10501.0 Mhz, Ecc=0, boardGroupID=0
Using device 0

Testing single precision
Loading binary file data/conv1.bin
Loading binary file data/conv1.bias.bin
Loading binary file data/conv2.bin
Loading binary file data/conv2.bias.bin
Loading binary file data/ip1.bin
Loading binary file data/ip1.bias.bin
Loading binary file data/ip2.bin
Loading binary file data/ip2.bias.bin
Loading image data/one_28x28.pgm
Performing forward propagation ...
Testing cudnnGetConvolutionForwardAlgorithm_v7 ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: -1.000000 time requiring 178432 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: -1.000000 time requiring 184784 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: -1.000000 time requiring 2057744 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Testing cudnnFindConvolutionForwardAlgorithm ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: 0.015360 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: 0.017408 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: 0.037728 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: 0.106496 time requiring 178432 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: 0.242464 time requiring 184784 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: 0.287936 time requiring 2057744 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Testing cudnnGetConvolutionForwardAlgorithm_v7 ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: -1.000000 time requiring 128848 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: -1.000000 time requiring 1433120 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: -1.000000 time requiring 2450080 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: -1.000000 time requiring 4656640 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Testing cudnnFindConvolutionForwardAlgorithm ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: 0.028672 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: 0.045024 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: 0.104768 time requiring 128848 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: 0.116736 time requiring 1433120 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: 0.136192 time requiring 4656640 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: 0.209152 time requiring 2450080 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Resulting weights from Softmax:
0.0000000 0.9999399 0.0000000 0.0000000 0.0000561 0.0000000 0.0000012 0.0000017 0.0000010 0.0000000
Loading image data/three_28x28.pgm
Performing forward propagation ...
Testing cudnnGetConvolutionForwardAlgorithm_v7 ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: -1.000000 time requiring 178432 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: -1.000000 time requiring 184784 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: -1.000000 time requiring 2057744 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Testing cudnnFindConvolutionForwardAlgorithm ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: 0.011488 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: 0.013312 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: 0.014336 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: 0.024576 time requiring 184784 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: 0.024576 time requiring 178432 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: 0.028512 time requiring 2057744 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Testing cudnnGetConvolutionForwardAlgorithm_v7 ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: -1.000000 time requiring 128848 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: -1.000000 time requiring 1433120 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: -1.000000 time requiring 2450080 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: -1.000000 time requiring 4656640 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Testing cudnnFindConvolutionForwardAlgorithm ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: 0.023552 time requiring 2450080 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: 0.026624 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: 0.029600 time requiring 4656640 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: 0.037536 time requiring 1433120 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: 0.044032 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: 0.049152 time requiring 128848 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Resulting weights from Softmax:
0.0000000 0.0000000 0.0000000 0.9999288 0.0000000 0.0000711 0.0000000 0.0000000 0.0000000 0.0000000
Loading image data/five_28x28.pgm
Performing forward propagation ...
Resulting weights from Softmax:
0.0000000 0.0000008 0.0000000 0.0000002 0.0000000 0.9999820 0.0000154 0.0000000 0.0000012 0.0000006

Result of classification: 1 3 5

Test passed!

Testing half precision (math in single precision)
Loading binary file data/conv1.bin
Loading binary file data/conv1.bias.bin
Loading binary file data/conv2.bin
Loading binary file data/conv2.bias.bin
Loading binary file data/ip1.bin
Loading binary file data/ip1.bias.bin
Loading binary file data/ip2.bin
Loading binary file data/ip2.bias.bin
Loading image data/one_28x28.pgm
Performing forward propagation ...
Testing cudnnGetConvolutionForwardAlgorithm_v7 ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: -1.000000 time requiring 178432 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: -1.000000 time requiring 184784 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: -1.000000 time requiring 2057744 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Testing cudnnFindConvolutionForwardAlgorithm ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: 0.008096 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: 0.011104 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: 0.011264 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: 0.030464 time requiring 184784 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: 0.030720 time requiring 2057744 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: 0.031488 time requiring 178432 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Testing cudnnGetConvolutionForwardAlgorithm_v7 ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: -1.000000 time requiring 1433120 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: -1.000000 time requiring 4656640 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: -1.000000 time requiring 2450080 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Testing cudnnFindConvolutionForwardAlgorithm ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: 0.037696 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: 0.041056 time requiring 2450080 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: 0.048128 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: 0.053248 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: 0.055296 time requiring 1433120 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: 0.057344 time requiring 4656640 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Resulting weights from Softmax:
0.0000001 1.0000000 0.0000001 0.0000000 0.0000563 0.0000001 0.0000012 0.0000017 0.0000010 0.0000001
Loading image data/three_28x28.pgm
Performing forward propagation ...
Testing cudnnGetConvolutionForwardAlgorithm_v7 ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: -1.000000 time requiring 178432 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: -1.000000 time requiring 184784 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: -1.000000 time requiring 2057744 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Testing cudnnFindConvolutionForwardAlgorithm ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: 0.010240 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: 0.012544 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: 0.014336 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: 0.025600 time requiring 178432 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: 0.026656 time requiring 184784 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: 0.032448 time requiring 2057744 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Testing cudnnGetConvolutionForwardAlgorithm_v7 ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: -1.000000 time requiring 1433120 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: -1.000000 time requiring 4656640 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: -1.000000 time requiring 2450080 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Testing cudnnFindConvolutionForwardAlgorithm ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: 0.022368 time requiring 2450080 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: 0.027648 time requiring 4656640 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: 0.030720 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: 0.034816 time requiring 1433120 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: 0.037984 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: 0.041984 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Resulting weights from Softmax:
0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000714 0.0000000 0.0000000 0.0000000 0.0000000
Loading image data/five_28x28.pgm
Performing forward propagation ...
Resulting weights from Softmax:
0.0000000 0.0000008 0.0000000 0.0000002 0.0000000 1.0000000 0.0000154 0.0000000 0.0000012 0.0000006

Result of classification: 1 3 5

Test passed!

(base) justin@justin-System-Product-Name:/usr/src$ locate cudnn_version.h
/usr/include/cudnn_version.h
(base) justin@justin-System-Product-Name:/usr/src$

ref:https://blog.csdn.net/qq_42406643/article/details/109545766文章来源地址https://www.toymoban.com/news/detail-845295.html

到了这里,关于【深度学习】环境搭建ubuntu22.04的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • Qt6.5.1+WebRTC学习笔记(十一)开发环境搭建(ubuntu22.04)

    Qt6.5.1+WebRTC学习笔记(十一)开发环境搭建(ubuntu22.04)

    win10开发测试已经一段时间了,最近将程序移植到ubuntu测试了下,改动不是很大,本教程记录下环境搭建过程 1.操作系统ubuntu22.04 64位 x86架构(建议更新到最新) 2.合理的上网方式,需要正常访问google,最好有40G以上流量 3.安装git,并设置代理 4.安装depot_tools depot_tools是包含下载

    2024年02月09日
    浏览(6)
  • ubuntu22.04搭建verilator仿真环境

    ubuntu22.04搭建verilator仿真环境

    操作系统为 Ubuntu(22.04.2 LTS),本次安装verilator开源verilog仿真工具,进行RTL功能仿真。下面构建版本为5.008的verilator仿真环境。先看一下我系统的版本: 安装依赖 获取源码,选择版本为5.008 进行编译 安装后查看版本,大功告成

    2024年02月10日
    浏览(14)
  • Qt6.5.1+WebRTC学习笔记(十二)环境搭建流媒体服务器(ubuntu22.04+SRS)

    Qt6.5.1+WebRTC学习笔记(十二)环境搭建流媒体服务器(ubuntu22.04+SRS)

    若只是实现一对一通信,仅使用webrtc就足够了。但有时间需要进行多个人的直播会议,当人比较多时,建议使用一个流媒体服务器,笔者使用的是SRS。 这个开源项目资料比较全,笔者仅在此记录下搭建过程 1.操作系统ubuntu22.04 64位 x86架构(建议更新到最新) 2.安装编译器相

    2024年02月09日
    浏览(33)
  • Ubuntu22.04 搭建 OpenHarmony 命令行开发环境

    在本文中,我们将介绍如何使用命令行工具在你的设备上安装OpenHarmony操作系统。OpenHarmony是一个开源的、面向物联网(IoT)设备的操作系统,它提供了一套全面的开发框架,使得开发者可以更容易地创建和部署IoT应用。 在本次安装中,使用的电脑是基于Ubuntu22的物理机器,按

    2024年02月03日
    浏览(32)
  • 从头搭建Android源码编译环境(Ubuntu 18.04 / 20.04 / 22.04)

    在新安装的Ubuntu上(版本20.04LTS),完成搭建Android源码编译环境步骤如下。 顺带说一句,当前用的比较多的Ubuntu是18.04和20.04,在实际项目中一直在用,可用性和稳定性都没问题。 最新的Ubuntu22.04版本,系统默认的二进制库变化比较大,编译Android源码有问题(实测过,没细研

    2024年02月06日
    浏览(8)
  • Ubuntu22.04 安装深度学习服务器全纪录

    Ubuntu22.04 安装深度学习服务器全纪录

    制作启动盘 参考链接:https://blog.csdn.net/lyx_ok/article/details/129308753 安装 Ubuntu 22.04 将U盘插到服务器上,开机按F11键(具体什么键跟主板型号有关)选择启动项进入临时的 Ubuntu 系统,在图形界面中选择 Install Ubuntu ,所有配置都可以使用默认的,改一下用户名和密码即可。 进入

    2024年02月16日
    浏览(10)
  • Linux环境搭建(Ubuntu22.04)+ 配置共享文件夹(Samba)

    Linux环境搭建(Ubuntu22.04)+ 配置共享文件夹(Samba)

    Linux开发环境准备 搭建Linux开发环境所需要的软件如下: VMware虚拟机: 用于运行Linux操作系统的虚拟机软件之一,VMware下载安装在文章中不做说明,可自行百度谢谢 Ubuntu光盘镜像: 用于源代码编译,有闲置计算机或服务器可以下载服务器版(没有图形用户界面),只有一台

    2024年02月04日
    浏览(25)
  • Ubuntu 22.04 搭建arm-linux-gcc交叉编译环境

    Ubuntu 22.04 搭建arm-linux-gcc交叉编译环境

    如果使用的是64位的Ubuntu系统,建议直接安装64位的arm-linux-gcc交叉编译器 下载地址: https://pan.baidu.com/s/14-lQpsXuEyCcHNHcTXcOyA 提取码: 55at 0. 注意在终端进行粘贴的操作为【Ctrl+shift+v】!! 把下载好的安装包移动到根目录下的tmp目录中(/tmp):在【其他位置】中的【计算机】中找

    2024年02月05日
    浏览(8)
  • ubuntu22.04 x86环境上使用QEMU搭建arm虚拟机

    ubuntu22.04 x86环境上使用QEMU搭建arm虚拟机

    apt-get -y install qemu apt-get -y install bridge-utils apt-get -y install vnc4server apt-get -y install qemu-kvm apt install -y qemu-system-arm apt-get -y install libvirt0 apt-get -y install libvirt-daemon apt-get -y install libvirt-daemon-system 安装完成后检查: virsh version ls /usr/bin/|grep qemu wget http://releases.linaro.org/components/kernel/

    2024年02月07日
    浏览(8)
  • Ubuntu22.04设置独显用于深度学习运算,核显用于屏幕显示

    Ubuntu22.04设置独显用于深度学习运算,核显用于屏幕显示

    目前有需求配置台式机win11+Ubuntu的双系统,安装双系统的教程比较多,安装n卡驱动的教程也比较多,但是大多数的教程都到独显驱动安装完毕为止,这意味着按照教程配置好之后桌面会占用独显的现存大概100-200M,对于显存比较紧张的深度学习运算的情况下很有可能是致命的

    2024年02月02日
    浏览(12)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包