手机销量分析案例

这篇具有很好参考价值的文章主要介绍了手机销量分析案例。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

项目背景

  • 某电商商城随着业务量的发展,积累了大量的用户手机销售订单数据。决策层希望能够通过对这些数据的分析了解更多的用户信息及用户的分布,从而可以指导下一年的市场营销方案以及更加精准的定位市场,进行广告投放。

数据说明

  • 数据时间从 2017.01.01至2019.03.31 共41800 条,数据存储在 excel 文件 中(Phone.xlsx)。
    手机销量分析案例,Python,智能手机,信息可视化,python,jupyter,数据分析,echarts

import pandas as pd
data = pd.read_excel(‘./Phone.xlsx’)
data.head()
手机销量分析案例,Python,智能手机,信息可视化,python,jupyter,数据分析,echarts

data.shape
(41800, 20)

  • 查看缺失数据的个数和占比

#查看缺失数据
for col in data.columns:
null_count = data[col].isnull().sum()
if null_count > 0:
p = str(null_count / data[col].size * 100)+‘%’
print(col+‘:’+p)
年:100.0%
月:100.0%
年龄段:100.0%

  • 缺失值处理

data[‘年’] = data[‘订单日期’].dt.year
data[‘月’] = data[‘订单日期’].dt.month

#数据分箱:
#[0-16,17-26,27-36,37-49]
data[‘年龄段’] = pd.cut(data[‘年龄’],bins=[0,16,26,36,49])

  • 查看消费者对不同手机品牌的青睐程度

#查看不同品牌手机的累计销量和累计销售额,且对累计销量进行降序
data.groupby(by=‘品牌’)[[‘销售额’,‘数量’]].sum().sort_values(‘数量’,ascending=False)
手机销量分析案例,Python,智能手机,信息可视化,python,jupyter,数据分析,echarts

  • 查看不同品牌的不同型号数量

p_count_list = [] #品牌名称和品牌型号的数量
for p in data[‘品牌’].unique():
#可以将p表示品牌的行数据
p_df = data.loc[data[‘品牌’] == p]
p_count = p_df[‘型号’].nunique() #品牌对应不同型号的数量
p_count_list.append([p,p_count])
pd.DataFrame(p_count_list,columns=[‘品牌’,‘型号数量’])
手机销量分析案例,Python,智能手机,信息可视化,python,jupyter,数据分析,echarts

#分组聚合
data.groupby(by=‘品牌’)[‘型号’].nunique()
手机销量分析案例,Python,智能手机,信息可视化,python,jupyter,数据分析,echarts

#分类汇总
data.pivot_table(index=‘品牌’,values=‘型号’,aggfunc=‘nunique’)
手机销量分析案例,Python,智能手机,信息可视化,python,jupyter,数据分析,echarts

  • 查看不同品牌中价格最高和最低的型号是什么

data.groupby(by=[‘品牌’,‘型号’])[‘价格’].agg([‘max’,‘min’])
手机销量分析案例,Python,智能手机,信息可视化,python,jupyter,数据分析,echarts

  • 查看不同月份的销量情况,哪些月份销量比较高

data.groupby(by=‘月’)[‘数量’].sum().sort_values(ascending=False)

3 16582
1 16420
2 15561
12 11060
5 11026
7 10987
11 10960
8 10884
4 10863
10 10833
6 10733
9 10644
Name: 数量, dtype: int64

  • 不同年龄段的购买力

data.groupby(by=‘年龄段’)[‘数量’].sum().sort_values(ascending=False)
年龄段
(16, 26] 74573
(26, 36] 68910
(0, 16] 1758
(36, 49] 1312
Name: 数量, dtype: int64

  • 查看不同省份不同城市的购买力情况

data.pivot_table(index=[‘省份名字’,‘城市名字’],values=‘数量’,aggfunc=‘sum’).sort_values(‘数量’,ascending=False)
手机销量分析案例,Python,智能手机,信息可视化,python,jupyter,数据分析,echarts

  • 查看不同品牌的不同机身内存的订单量(只考虑订单量,不考虑一个订单中包含几个已购商品)

pd.crosstab(index=data[‘品牌’],columns=data[‘机身内存’])
手机销量分析案例,Python,智能手机,信息可视化,python,jupyter,数据分析,echarts
内容来源于大数据分析课程。文章来源地址https://www.toymoban.com/news/detail-845447.html

到了这里,关于手机销量分析案例的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • python数据分析及可视化(十四)数据分析可视化练习-上市公司可视化数据分析、黑色星期五案例分析

    从中商情报网下载的数据,表格中会存在很多的问题,查看数据的信息有无缺失,然后做数据的清晰,有无重复值,异常数据,省份和城市的列名称和数据是不对照的,删除掉一些不需要的数据,省份不完整的数据,然后进行数据分析以及可视化,如上市公司中的行业Top5,用

    2024年02月03日
    浏览(58)
  • Python淘宝手机数据可视化分析大屏全屏系统

     博主介绍 :黄菊华老师《Vue.js入门与商城开发实战》《微信小程序商城开发》图书作者,CSDN博客专家,在线教育专家,CSDN钻石讲师;专注大学生毕业设计教育和辅导。 所有项目都配有从入门到精通的基础知识视频课程,学习后应对毕业设计答辩。 项目配有对应开发文档、

    2024年04月14日
    浏览(53)
  • Python淘宝手机爬虫数据可视化分析大屏全屏系统

     博主介绍 :黄菊华老师《Vue.js入门与商城开发实战》《微信小程序商城开发》图书作者,CSDN博客专家,在线教育专家,CSDN钻石讲师;专注大学生毕业设计教育和辅导。 所有项目都配有从入门到精通的基础知识视频课程,学习后应对毕业设计答辩。 项目配有对应开发文档、

    2024年04月17日
    浏览(51)
  • Python爬虫淘宝手机数据可视化分析大屏全屏系统

     博主介绍 :黄菊华老师《Vue.js入门与商城开发实战》《微信小程序商城开发》图书作者,CSDN博客专家,在线教育专家,CSDN钻石讲师;专注大学生毕业设计教育和辅导。 所有项目都配有从入门到精通的基础知识视频课程,免费 项目配有对应开发文档、开题报告、任务书、

    2024年02月03日
    浏览(51)
  • Python数据分析案例12——网飞影视剧数据分析及其可视化

    Netflix是最受欢迎的媒体和视频流平台之一。他们的平台上有超过 8000 部电影或电视节目。截至 2021 年年中,他们在全球拥有超过 2 亿订阅者。 博主看美剧也较为多,像《怪奇物语》、《性爱自修室》等高分美剧都是网飞的。 对于网飞的影视剧,我们可以分析其电影和电视剧

    2024年02月08日
    浏览(54)
  • 【Python数据分析案例】——中国高票房电影分析(爬虫获取数据及分析可视化全流程)

    案例背景 最近总看到《消失的她》票房多少多少,《孤注一掷》票房又破了多少多少… 于是我就想自己爬虫一下获取中国高票房的电影数据,然后分析一下。 数据来源于淘票票:影片总票房排行榜 (maoyan.com) 爬它就行。 代码实现 首先爬虫获取数据: 数据获取 导入包 传入网

    2024年01月20日
    浏览(286)
  • Python招聘信息爬虫数据可视化分析大屏全屏系统

     博主介绍 :黄菊华老师《Vue.js入门与商城开发实战》《微信小程序商城开发》图书作者,CSDN博客专家,在线教育专家,CSDN钻石讲师;专注大学生毕业设计教育和辅导。 所有项目都配有从入门到精通的基础知识视频课程,学习后应对毕业设计答辩。 项目配有对应开发文档、

    2024年04月09日
    浏览(64)
  • python机器学习数据建模与分析——决策树详解及可视化案例

    你是否玩过二十个问题的游戏,游戏的规则很简单:参与游戏的一方在脑海里想某个事物,其他参与者向他提问题,只允许提20个问题,问题的答案也只能用对或错回答。问问题的人通过推断分解,逐步缩小待猜测事物的范围。决策树的工作原理与20个问题类似,用户输人一系

    2024年02月03日
    浏览(46)
  • 【Python】数据分析案例:世界杯数据可视化 | 文末送书

    每一场体育赛事都会产生大量数据,这些数据可用于分析运动员、球队表现以及比赛中的亮点。作为分析案例,我们使用T20世界杯的数据进行分析。如果你有兴趣学习如何分析类似T20世界杯这样的体育赛事,本文将为您提供指导。在本文中,我们将使用 Python 来分析 2022年T2

    2024年02月05日
    浏览(54)
  • Python数据分析案例30——中国高票房电影分析(爬虫获取数据及分析可视化全流程)

    最近总看到《消失的她》票房多少多少,《孤注一掷》票房又破了多少多少..... 于是我就想自己爬虫一下获取中国高票房的电影数据,然后分析一下。 数据来源于淘票票:影片总票房排行榜 (maoyan.com) 爬它就行。 不会爬虫的同学要这代码演示数据可以参考:数据   首先爬虫

    2024年02月08日
    浏览(60)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包