关于单片机的分频定时器的记录

这篇具有很好参考价值的文章主要介绍了关于单片机的分频定时器的记录。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

记录一内部时钟:

对于单片机的频率原来一直不太明白,现在在学习进行记录:

主频:

以一个72M的STM32单片机作为主频为例子,这个72M主频说得是一秒钟产生72000000(七千两百万)个脉冲或周期,就是一秒钟振荡七千两百万次。

分频

对于分频来说,实际就是相当于间接降低这个主频,减少这个震荡次数,比如我分频系数为72,那么我就是1S产生的震荡次数就是72000000/72=1000000次,相当于用少的计数来对一秒钟进行计数。
那么有人好奇了那么分频的好处是什么呢?

分频的好处:

时间精度控制:

(1)时间精度控制:分频器允许你准确地控制定时器的时间精度。通过减慢计数速度,你可以生成更精确的时间延迟,从而满足各种应用的时间精度需求。
举个例子:
你的STM32微控制器的主频是72MHz,这意味着每秒钟有72,000,000个时钟周期。如果你直接使用主频来控制定时器,那么时间精度可能会受到限制,因为一些操作可能需要更短的时间间隔。
为了提高时间精度,你可以使用分频器来降低定时器的计数速度。例如,你可以将分频器设置为72,000,这将使定时器每秒钟计数1,000次。这意味着你可以非常精确地测量时间间隔,因为每个计数周期的时间是1毫秒。如果需要更高的精度,你可以进一步降低分频器的值。

适应不同的时间间隔

(2)适应不同的时间间隔:使用分频器,你可以根据需要生成不同范围的时间间隔。如果需要较长的时间延迟,你可以降低计数速度。如果需要较短的时间间隔,你可以增加计数速度。这使得分频器非常灵活。
举个例子
长时间间隔:在某些情况下,你可能希望较长的时间间隔,例如每小时采集一次温度数据并上传到服务器。在这种情况下,你可以设置一个较大的分频器值,以降低计数器的计数速度,从而延长时间间隔。例如,如果你的主频是72MHz,可以将分频器设置为720,000,这将使计数器每秒钟计数720,000次,每个计数周期的时间为1秒。这样,你就可以在每秒钟计数一次,然后每小时上传一次数据。

短时间间隔:在其他情况下,你可能需要更短的时间间隔,比如每分钟采集一次数据并上传到服务器。在这种情况下,你可以减小分频器值,增加计数器的计数速度,从而缩短时间间隔。例如,将分频器设置为72,000,计数器每秒钟计数72,000次,每个计数周期的时间为0.01秒(10毫秒)。这样,你就可以在每10毫秒计数一次,然后每分钟上传一次数据。

(3)降低功耗:分频器允许你降低定时器或计数器的计数速度,从而降低系统的功耗。这对于需要在低功耗条件下运行的电池供电设备非常重要。

(4)提高系统稳定性:通过减慢计数速度,分频器可以提高定时器或计数器的稳定性。这有助于减小计数器的溢出频率,防止计数器在非常短的时间内溢出,从而导致错误。

(5)适应不同的时钟源:有些系统可能需要切换不同的时钟源,分频器可以帮助你调整计数器以适应不同的时钟源频率。

(2)关于外部时钟的问题

对于STM32来说使用外部晶体的32.768kHz的振荡器,因为频率比较低就不需要进行分频了。
那么怎么产生一个1s的一个数据的呢?下面进行计算
单片机72mhz是什么意思,嵌入式开发 ,单片机,C语言,C++,单片机,嵌入式硬件
我们的RTC_CLK为32.768kHz也就是外部时钟,所以我们把PRL中写入32767即可,为2的15次方,为了能被32.768K进行整除所以我们进行+1操作,为了得到一个整数的计数。
那么我们产生1S的计数就为1。
从上述能知道TR_CLK输出必须为1s。如果产生一个0.15S的应该怎么实现呢?

有一个叫做RTC_DIV:预分频器余数寄存器和RTC_CNT:计数器寄存器的两个东西。重新配置一个0.15S的,我们将PRL设置为0,那么Ftr_clk等于32768。也就是在RTC_DIV装载为32768,因为DIV是自减的,并且从32768一直减少到0,所需要的时间为1s,所以减少一个数,所用的时间为1/32768s,那么减少多少个数,就计时了0.15s呢?

所以:1/32768s * n = 0.15,n = 0.15 * 32768,又因为DIV寄存器是可读的,所以我们就能实现0.15s的计时。

下面是一个使用STM32F1标准库的定时器初始化程序,可以生成一个1秒的定时器。这个示例使用了TIM4定时器,你可以根据需要修改为其他定时器。

#include "stm32f10x.h"

// 定义定时器参数
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;

// 定义定时器溢出计数器
volatile uint32_t timer_counter = 0;

// 定时器初始化函数
void Timer_Init() {
  // 初始化TIM4定时器
  RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM4, ENABLE);

  // 配置定时器参数
  TIM_TimeBaseStructure.TIM_Period = 9999;       // 计数器重载值,产生1秒的定时
  TIM_TimeBaseStructure.TIM_Prescaler = 7199;     // 预分频器,产生1MHz的时钟(72MHz / 7200)
  TIM_TimeBaseStructure.TIM_ClockDivision = 0;    // 时钟分频,不分频
  TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;  // 向上计数模式
  TIM_TimeBaseInit(TIM4, &TIM_TimeBaseStructure);

  // 启用定时器中断
  TIM_ITConfig(TIM4, TIM_IT_Update, ENABLE);

  // 启用定时器
  TIM_Cmd(TIM4, ENABLE);

  // 配置定时器4中断
  NVIC_InitTypeDef NVIC_InitStructure;
  NVIC_InitStructure.NVIC_IRQChannel = TIM4_IRQn;
  NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
  NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
  NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
  NVIC_Init(&NVIC_InitStructure);
}

int main(void) {
  // 初始化定时器
  Timer_Init();

  while (1) {
    // 在这里可以执行其他任务
    // ...
  }
}

// 定时器4中断处理函数
void TIM4_IRQHandler(void) {
  if (TIM_GetITStatus(TIM4, TIM_IT_Update) != RESET) {
    // 定时器中断发生,执行你的操作
    // ...
    
    // 清除中断标志
    TIM_ClearITPendingBit(TIM4, TIM_IT_Update);
  }
}

解释

这个示例初始化了TIM4定时器,将其配置为产生1秒的定时,并启用了定时器中断。当定时器溢出时,中断处理函数TIM4_IRQHandler将被调用,你可以在这个函数中执行你的操作。

请注意,你可以根据需要调整TIM4的预分频器和重载值来生成不同的定时器。在上述代码中,我们使用预分频器7200(72MHz / 7200)和重载值9999来实现1秒的定时。文章来源地址https://www.toymoban.com/news/detail-845548.html

到了这里,关于关于单片机的分频定时器的记录的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【51单片机】:定时器的详解(包括对单片机定时解释、各类定时方式,以及中断方式)

              51定时/计数器的详解。                   码字不易,如有帮助请收藏,点赞哦。         前提:首先我们知道51单片机内部有21~26个特殊功能寄存器: P.x口寄存器:P0、P1、P2、P3 数据指针寄存器:DP0H、DP0L、DP1H、DP1L 定时器: TH1、TL1、TH0、TL0、TMOD、TCON 串口:

    2024年02月07日
    浏览(97)
  • 【单片机】STM32单片机的各个定时器的定时中断程序,标准库

    高级定时器和普通定时器的区别(https://zhuanlan.zhihu.com/p/557896041): TIM1是高级定时器,使用的时钟总线是RCC_APB2Periph_TIM1,和普通定时器不一样。 timer.c timer.h 调用 timer.c timer.h 调用 timer.c timer.h 调用 timer.c timer.h 调用 timer.c timer.h 调用

    2024年02月11日
    浏览(53)
  • 51单片机(七)定时器

    ❤️ 专栏简介:本专栏记录了从零学习单片机的过程,其中包括51单片机和STM32单片机两部分;建议先学习51单片机,其是STM32等高级单片机的基础;这样再学习STM32时才能融会贯通。 ☀️ 专栏适用人群 :适用于想要从零基础开始学习入门单片机,且有一定C语言基础的的童鞋

    2024年02月07日
    浏览(56)
  • 51单片机——定时器中断

    新版51单片机内部有 3 个16位可编程的定时器/计数器,即定时器 T0,T1,T2 。他们既有 定时 功能又有 计数 功能,我们可以通过配置与它们相关的特殊功能寄存器可以选择启用定时功能或计数功能;其中需要注意的是,这个定时器系统是单片机内部的一个独立的硬件部分,它与

    2023年04月10日
    浏览(44)
  • 51单片机定时器实验(汇编)

    基于AT89C51的定时器实验,汇编语言,分享出来是希望各位能共同学习。附上注释希望能认真研究,若有错误请指出,谢谢。 一、实验目的 掌握单片机定时器的使用方法。 掌握中断的使用方法。 二、实验内容 采用中断方式控制定时器。使得单片机P1.0引脚产生周期为1S的方波

    2024年02月11日
    浏览(58)
  • 51单片机之定时器篇

    首先,学好单片机必须要搞懂定时器,定时器是单片机重要的组成部分之一,总之,学不好定时器,单片机相当于没学,下面就让我介绍如何学好单片机定时器。 学习单片机首先要明白的: 1,51单片机有两组定时器/计数器,既可以定时,又可以计数,总称之定时器 2,单片

    2024年02月11日
    浏览(53)
  • 51单片机 | 定时器中断实验

      这一节介绍51单片机的定时器中断。 STC89C5X 含有 3 个定时器:定时器 0、定时器 1、定时器 2(注意: 51 系列单片机一定有基本的 2 个定时器(定时器 0 和定时器 1),但不全有 3 个中断,需要查看芯片手册,通常我们使用的是基本的 2 个定时器:定时器 0/1)。本节要实现

    2024年02月06日
    浏览(110)
  • 51单片机PWM(定时器)

    目录 前言 一、PWM的介绍 二、在定时器中配置PWM 三、代码  总结         PWM普遍应用于惯性系统,我们知道单片机几乎只能输出“1”和“0”两种状态,即开和关,想要输出模拟量是不太容易实现的,那么怎样才能使单片机输出平滑的线性信号呢?没接触过PWM的小伙伴可能第

    2024年02月09日
    浏览(55)
  • 蓝桥杯单片机学习6——定时器/计数器&定时器实现秒表功能

    上一期我们学习了外部中断的相关内容,现在我接着来学习定时器。 定时器/计数器是一种能够对内部时钟信号或者外部输入信号进行计数,当计数值达到设定要求时,向CPU提出中断请求,从而实现定时或计数功能的外设。定时器的基本工作原理是进行计数。 举个栗子 :你可

    2024年02月04日
    浏览(49)
  • 单片机——交通灯(定时器中断)

    1.基础知识 1.1、中断源 中断源符号 名称 中断引起原因 中断号 /INT0 外部中断0 P3.2引脚低电平或下降沿信号 0 T0 定时器0中断 定时,计数器0计数回0溢出 1 /INT01 外部中断1 P3.3引脚低电平或下降沿信号 2 T1 定时器1中断 定时/计数器1计数回0溢出 3 TI/RI 串行口中断 串行通信完成一帧

    2024年02月08日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包