Ubuntu20.04配置深度学习环境(全网最细最全)

这篇具有很好参考价值的文章主要介绍了Ubuntu20.04配置深度学习环境(全网最细最全)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

一、NVIDIA显卡驱动安装

二、安装CUDA

三、安装cuDNN

四、安装Anaconda

五、Anaconda的简单使用

5.1 管理环境

5.2 管理包(package)

5.3 conda install 与 pip install

5.4 conda configuration


       默认你已经完成Ubuntu20.04的安装,如果没安装的话可以参考其他博客,我的显卡是GTX1660Ti

一、NVIDIA显卡驱动安装

       大多数人在安装Ubutnu20.04系统的时候为了节约时间,通常不会勾选“图形或无线硬件,以及其他媒体格式安装第三方软件”,系统会默认使用Ubuntu社区自己开发的开源显卡驱动“nouveau”,而不是NVIDIA的显卡驱动,这里我主要讲如果没有勾选那个选项,后续该如何操作。

ubuntu配置深度学习,DeepLearning,深度学习,人工智能,pytorch,conda,ubuntu

       实际上,Ubuntu为我们提供了可以下载NVIDIA显卡驱动的地方,打开“软件与更新”,点击“附加驱动”,此时会看到目前使用的显卡驱动是“使用X.Org X server - Nouveau display driver 来自 xserver-xorg-video-nouveau(开源)”,我们从中选择一个NVIDIA的专有驱动就好,比如我选择的是“nvidia-driver-470(专有)”,其中的470表示驱动版本,建议不要选太高,如图:

ubuntu配置深度学习,DeepLearning,深度学习,人工智能,pytorch,conda,ubuntu

       点击“应用更改(A)”即可,少等片刻,此时会系统会自动安装NVIDIA的显卡驱动替换掉原来的nouvean显卡驱动。

       安装完成以后有时需要重启一下电脑才能使用nvidia-smi命令找到驱动信息。

二、安装CUDA

      2006年,NVIDIA公司发布了CUDA(Compute Unified Device Architecture),是一种新的操作GPU计算的硬件和软件架构,是建立在NVIDIA的GPUs上的一个通用并行计算平台和编程模型,它提供了GPU编程的简易接口,基于CUDA编程可以构建基于GPU计算的应用程序,利用GPUs的并行计算引擎来更加高效地解决比较复杂的计算难题。它将GPU视作一个数据并行计算设备,而且无需把这些计算映射到图形API。操作系统的多任务机制可以同时管理CUDA访问GPU和图形程序的运行库,其计算特性支持利用CUDA直观地编写GPU核心程序。CUDA提供了对其它编程语言的支持,如C/C++,Python,Fortran等语言。只有安装CUDA才能够进行复杂的并行计算。

       CUDA版本要根据自己安装的显卡驱动来进行选择,打开一个终端,输入“nvidia-smi”可以查看显卡的信息,如图:

ubuntu配置深度学习,DeepLearning,深度学习,人工智能,pytorch,conda,ubuntu

       其中Driver Version: 470.223.02表示显卡驱动版本,CUDA Version: 11.4表示支持的CUDA版本最高为11.4(高版本的CUDA能向下兼容),172MiB / 5944MiB分子表示目前使用的显存,分母表示显卡总显存,大概为6G。

       在CUDA Toolkit Archive | NVIDIA Developer下载CUDA安装包,我选择的是CUDA Toolkit 11.4.0,如图:

ubuntu配置深度学习,DeepLearning,深度学习,人工智能,pytorch,conda,ubuntu

       操作系统选择Linux,架构选择x86_64,平台选择Ubuntu,我电脑装的是Ubuntu20.04,因此版本我选择20.04,安装方式选择runfile(local),然后下面会根据前面的选择生成安装命令,如图:

ubuntu配置深度学习,DeepLearning,深度学习,人工智能,pytorch,conda,ubuntu

ubuntu配置深度学习,DeepLearning,深度学习,人工智能,pytorch,conda,ubuntu

       终端执行第一条命令下载“cuda_11.4.0_470.42.01_linux.run”文件,如图:

ubuntu配置深度学习,DeepLearning,深度学习,人工智能,pytorch,conda,ubuntu

       终端执行第二条命令回车安装CUDA显卡驱动,稍等片刻进入以下界面:

ubuntu配置深度学习,DeepLearning,深度学习,人工智能,pytorch,conda,ubuntu

 选择“continue”后回车,进入下面界面:

ubuntu配置深度学习,DeepLearning,深度学习,人工智能,pytorch,conda,ubuntu

输入“accept”后回车,进入下面界面:

ubuntu配置深度学习,DeepLearning,深度学习,人工智能,pytorch,conda,ubuntu

因为我们之前已经安装了显卡驱动,因此需要点击空格键去掉安装显卡驱动的选项,然后选择install并回车。

ubuntu配置深度学习,DeepLearning,深度学习,人工智能,pytorch,conda,ubuntu

前面密码我们已经输过,因此不用下意识输入密码,需要在这个界面等一会儿:

ubuntu配置深度学习,DeepLearning,深度学习,人工智能,pytorch,conda,ubuntu

然后终端打印日志,完成CUDA安装: 

ubuntu配置深度学习,DeepLearning,深度学习,人工智能,pytorch,conda,ubuntu

 此时可在终端输入命令nvcc -V查看cuda信息,可以看到:

ubuntu配置深度学习,DeepLearning,深度学习,人工智能,pytorch,conda,ubuntu

这并不是因为系统没有安装CUDA,而是环境中没有罢了。千万不要执行sudo apt install nvidia-cuda-toolkit,否则可能会重新安装一个版本。而是需要配置CUDA的环境变量,输入gedit ~/.bashrc命令打开文件,在文件结尾输入以下语句,保存并source ~/.bashrc更新环境变量。

export PATH=/usr/local/cuda-11.4/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-11.4/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

再次输入nvcc -V查看即可显示CUDA的版本:

ubuntu配置深度学习,DeepLearning,深度学习,人工智能,pytorch,conda,ubuntu

至此,CUDA安装完成。

       然后可以测试一下CUDA。系统安装CUDA包括两个部分:NVIDIA CUDA GPU计算工具包NVIDIA CUD示例包两个部分。

       如下图所示,Ubuntu20.04系统会默认地将CUDA的NVIDIA GPU计算工具包安装到/usr/local/文件夹下面,可以看到该文件夹下多了两个文件夹cuda和cuda-11.4。

ubuntu配置深度学习,DeepLearning,深度学习,人工智能,pytorch,conda,ubuntu

       对CUDA安装是否成功,需要进入NVIDIA CUDA示例包,其位于/home/fish/NVIDIA_CUDA-11.4_Samples内,在该文件夹下打开终端,并输入make。然后进入1_Utilities/deviceQuery文件夹,并在终端执行./deviceQuery 命令,如下result=PASS则表示安装成功。

ubuntu配置深度学习,DeepLearning,深度学习,人工智能,pytorch,conda,ubuntu

三、安装cuDNN

       cuDNN是NVIDIA打造的针对深度神经网络的加速库,是一个用于深层神经网络的GPU加速库。如果要用GPU训练模型,cuDNN不是必须的,但是一般会采用这个加速库。

       需要根据自己的CUDA版本安装对应的cuDNN,因此需要先安装CUDA才能安装cuDNN,点击Log in | NVIDIA Developer登录后可直接进入官网,我的CUDA版本为11.4,所以我选择了CUDA版本为11.4版本对应的cuDNN,如图下载Local Installer for Linux x86_64 (Tar):

ubuntu配置深度学习,DeepLearning,深度学习,人工智能,pytorch,conda,ubuntu

       对下载的cudnn-linux-x86_64-8.9.6.50_cuda11-archive.tar.xz进行解压操作(右键“提取到此处”即可),然后进入文件夹:

cd cudnn-linux-x86_64-8.9.6.50_cuda11-archive/

        执行下面两个命令,复制文件:

sudo cp -d -r ./lib/* /usr/local/cuda-11.4/lib64/
sudo cp -r ./include/* /usr/local/cuda-11.4/include/

        赋予权限:

sudo chmod a+r /usr/local/cuda-11.4/include/cudnn.h /usr/local/cuda-11.4/lib64/libcudnn*

        查看信息:

cat /usr/local/cuda-11.4/include/cudnn_version.h | grep CUDNN_MAJOR -A 2

ubuntu配置深度学习,DeepLearning,深度学习,人工智能,pytorch,conda,ubuntu

四、安装Anaconda

       在Free Download | Anaconda下载最新版Anaconda的.sh启动文件,本文我用的是Anaconda3-2023.09-0-Linux-x86_64.sh,在Anaconda3-2023.09-0-Linux-x86_64.sh所在目录执行以下命令:

bash Anaconda3-2023.09-0-Linux-x86_64.sh

全程选择enter或者yes即可,下图证明安装完成:

ubuntu配置深度学习,DeepLearning,深度学习,人工智能,pytorch,conda,ubuntu

此时新建一个终端,会直接进入base环境:

ubuntu配置深度学习,DeepLearning,深度学习,人工智能,pytorch,conda,ubuntu

五、Anaconda的简单使用

5.1 管理环境

(1)创建虚拟环境

conda create -n env_name python=3.8

这表示创建python版本为3.8、名字为env_name的虚拟环境。

       创建后,env_name文件可以在Anaconda安装目录envs文件下找到。在不指定python版本时,自动创建基于最新python版本的虚拟环境。

(2)查看有哪些虚拟环境

conda env list

        所显示的列表中,前面带星号“*“的表示当前活动环境,如图:

ubuntu配置深度学习,DeepLearning,深度学习,人工智能,pytorch,conda,ubuntu

(3)激活虚拟环境

conda activate env_name

(4)退出虚拟环境

conda deactivate

(5)删除虚拟环境

       执行以下命令可以将该指定虚拟环境及其中所安装的包都删除:

conda remove --name env_name --all

       如果只删除虚拟环境中的某个或者某些包则是:

conda remove --name env_name  package_name

(6)导出虚拟环境

       很多的软件依赖特定的环境,我们可以导出环境,这样方便自己在需要时恢复环境,也可以提供给别人用于创建完全相同的环境。

#获得环境中的所有配置
conda env export --name myenv > myenv.yml
#重新还原环境
conda env create -f  myenv.yml

5.2 管理包(package)

(1)查询看当前环境中安装了哪些包

conda list

(2)包的安装和更新

       在当前(虚拟)环境中安装一个包:

conda install package_name

       也可以用以下命令安装某个特定版本的包(以下例为安装0.20.3版本的numpy):

conda install numpy=0.20.3

       可以用以下命令将某个包更新到它的最新版本:

conda update numpy

(3)包的卸载

conda uninstall package_name

这样会将依赖于这个包的所有其它包也同时卸载。

5.3 conda install 与 pip install

感谢博主笨牛慢耕的分享,这一部分参考他的博客:

【精选】Anaconda conda常用命令:从入门到精通_conda命令_笨牛慢耕的博客-CSDN博客文章浏览阅读6.4w次,点赞149次,收藏719次。简要介绍Anaconda conda的常用命令的使用,掌握了这些基本命令应该足以应付日常的‘生活自理’吧_conda命令https://blog.csdn.net/chenxy_bwave/article/details/119996001#:~:text=Anaconda%20conda%E5%B8%B8%E7%94%A8%E5%91%BD%E4%BB%A4%EF%BC%9A%E4%BB%8E%E5%85%A5%E9%97%A8%E5%88%B0%E7%B2%BE%E9%80%9A%201%201.%20%E5%89%8D%E8%A8%80%20Conda%E6%98%AFAnaconda%E4%B8%AD%E4%B8%80%E4%B8%AA%E5%BC%BA%E5%A4%A7%E7%9A%84%E5%8C%85%E5%92%8C%E7%8E%AF%E5%A2%83%E7%AE%A1%E7%90%86%E5%B7%A5%E5%85%B7%EF%BC%8C%E5%8F%AF%E4%BB%A5%E5%9C%A8Windows%E7%9A%84Anaconda%20Prompt%E5%91%BD%E4%BB%A4%E8%A1%8C%E4%BD%BF%E7%94%A8%EF%BC%8C%E4%B9%9F%E5%8F%AF%E4%BB%A5%E5%9C%A8macOS%E6%88%96%E8%80%85Linux%E7%B3%BB%E7%BB%9F%E7%9A%84%E7%BB%88%E7%AB%AF%E7%AA%97%E5%8F%A3%20%28terminal,%E7%9A%84%E7%AE%A1%E7%90%86%204.1%20%E6%9F%A5%E8%AF%A2%E5%8C%85%E7%9A%84%E5%AE%89%E8%A3%85%E6%83%85%E5%86%B5%20...%205%205.%20Python%E7%89%88%E6%9C%AC%E7%9A%84%E7%AE%A1%E7%90%86%20%E9%99%A4%E4%BA%86%E4%B8%8A%E9%9D%A2%E5%9C%A8%E5%88%9B%E5%BB%BA%E8%99%9A%E7%8E%AF%E5%A2%83%E6%97%B6%E5%8F%AF%E4%BB%A5%E6%8C%87%E5%AE%9Apython%E7%89%88%E6%9C%AC%E5%A4%96%EF%BC%8CAnaconda%E5%9F%BA%E7%8E%AF%E5%A2%83%E7%9A%84python%E7%89%88%E6%9C%AC%E4%B9%9F%E5%8F%AF%E4%BB%A5%E6%A0%B9%E6%8D%AE%E9%9C%80%E8%A6%81%E8%BF%9B%E8%A1%8C%E6%9B%B4%E6%94%B9%E3%80%82(1)两者区别

       conda可以管理非python包,pip只能管理python包。
       conda自己可以用来创建环境,pip不能,需要依赖virtualenv之类的。
       conda安装的包是编译好的二进制文件,安装包文件过程中会自动安装依赖包;pip安装的包是wheel或源码,装过程中不会去支持python语言之外的依赖项。
       conda安装的包会统一下载到一个目录文件中,当环境B需要下载的包,之前其他环境安装过,就只需要把之间下载的文件复制到环境B中,下载一次多次安装。pip是直接下载到对应环境中。
       conda只能在conda管理的环境中使用,例如比如conda所创建的虚环境中使用。pip可以在任何环境中使用,在conda创建的环境 中使用pip命令,需要先安装pip(conda install pip ),然后可以 环境A 中使用pip 。conda 安装的包,pip可以卸载,但不能卸载依赖包,pip安装的包,只能用pip卸载。

(2)能否混用

       首先,不建议混用。混用容易导致库的依赖关系出现混乱,然后突然哪天环境可能就崩了,安装不了新的包,无法进行conda update之类的。

       其次,由于conda的库确实不如pip的库丰富{很多包只在 pip 有:PYPI有15万可用包,而Anaconda repository中(使用conda命令安装)提供了1,500多个软件包,Anaconda cloud上(使用conda-forge或bioconda命令安装)的几千种其他软件包。所以有时候可能迫不得已要使用pip安装。切记,只有在conda install搞不定时才使用pip intall。 而且,最后使用虚拟环境进行环境隔离。

(3)安装在哪里

       conda install xxx:这种方式安装的库都会放在anaconda3/pkgs目录下,这样的好处就是,当在某个环境下已经下载好了某个库,再在另一个环境中还需要这个库时,就可以直接从pkgs目录下将该库复制至新环境而不用重复下载。
       pip install xxx:分两种情况,一种情况就是当前conda环境的python是conda安装的,和系统的不一样,那么xxx会被安装到anaconda3/envs/current_env/lib/python3.x/site-packages文件夹中,如果当前conda环境用的是系统的python,那么xxx会通常会被安装到~/.local/lib/python3.x/site-packages文件夹中。

(4)如何判断conda中的某个包是通过conda还是pip安装的(windows)

       执行​conda list,用pip安装的包显示的build项目为pypi。如下图所示:

ubuntu配置深度学习,DeepLearning,深度学习,人工智能,pytorch,conda,ubuntu

5.4 conda configuration

       conda的配置文件为".condarc",该文件在安装时不是缺省存在的。但是当你第一次运行conda config命令时它就被自动创建了。".condarc"配置文件遵循简单的YAML语法。

(1)condarc文件在哪里

       执行conda info,会有信息显示如下所示:

ubuntu配置深度学习,DeepLearning,深度学习,人工智能,pytorch,conda,ubuntu

(2)Channel管理

       追加conda-forge channel:

conda config --add channels conda-forge

       移除conda-forge channel:

conda config --remove channels conda-forge

       查询当前配置中包含哪些channels:文章来源地址https://www.toymoban.com/news/detail-845902.html

conda config --get channels

到了这里,关于Ubuntu20.04配置深度学习环境(全网最细最全)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • ubuntu20.04配置ros noetic和cuda,cudnn,anaconda,pytorch深度学习的环境

    这里介绍下本篇文章的目的,为了方便自己日后在其他主机上搭建环境,也为了帮助遇到相同问题的人。本篇文章主要是解决ubuntu20.04搭建机械臂视觉抓取的环境部署问题。第一个环境了ROS环境,第二个环境是深度学习yolov5的环境。 这里推荐鱼香ros的便携式安装方法,这里感

    2024年02月07日
    浏览(92)
  • Ubuntu 20.04 RTX 4090显卡 深度学习环境配置(Nvidia显卡驱动、CUDA11.6.0、cuDNN8.5)

    参考文献:从零到一保姆级Ubuntu深度学习服务器环境配置教程 看文献中“ 三、 NVIDIA驱动安装 ” 安装NVIDIA驱动,这也是安装CUDA10.0及其对应版本的CuDNN和tensorflow的重要步骤。 1.1.1 英伟达中国驱动官网 进入英伟达中国驱动官网 1.1.2 输入显卡型号查询 1.1.3 查看搜索结果 1.2.1 方

    2024年02月04日
    浏览(112)
  • 【深度学习环境配置】ubuntu 20.04+4060 Ti+CUDA 11.8+pytorch(装机、显卡驱动、CUDA、cudnn、pytorch)

    【深度学习环境配置】ubuntu 20.04+4060 Ti+CUDA 11.8+pytorch(装机、显卡驱动、CUDA、cudnn、pytorch) 📆 安装时间 2023.11.08-2023.11.10 Windows 和 Ubuntu 双系统的安装和卸载 B站教程 【本文基本上跟这个详细教程一致,优先推荐看这个!】ubuntu20.04 下深度学习环境配置 史上最详细教程 【精

    2024年02月04日
    浏览(65)
  • 【Ubuntu 20.04安装和深度学习环境搭建 4090显卡】

    Ubuntu安装步骤参考文章 知乎:Ubuntu 20.04系统安装及初始配置 先在Ubuntu官网下载系统镜像(或直接bing搜索对应版本)。【Ubuntu官网】 参考这篇文章 https://blog.csdn.net/qq_21386397/article/details/129894803 需要准备一个U盘(使用之前将U盘中内容做好备份,做成启动盘后U盘内文件将被清

    2024年02月09日
    浏览(72)
  • 【SDN】最新!手把手零基础在Ubuntu 20.04搭建SDN环境(全网最详细)/Floodlight/Mininet/sFlow

    想在Linux下搭建SDN环境,几乎把中文互联网所有相关教程都看了,用了一周时间才弄好,写下这篇文章帮助大家排坑。包括搭建 Floodlight 和 Mininet , sFlow。 网上教程很多,就不展开了。 参考了 Unbuntu下Java环境搭建-CSDN博客 Linux之Ubuntu20.04安装Java JDK8的两种方式-CSDN博客 一 更

    2024年03月12日
    浏览(202)
  • Ubuntu 20.04 系统配置 OpenVINO 2022.3 环境

    由于 OpenVINO 2021 版本在调用 IECore 时会出现 Segmentation fault 的问题,因此需要将其升级为 2022 版本的。 1. 卸载原来版本的 OpenVINO 进入OpenVINO的卸载目录,通常在 /opt/intel 文件夹下, 之后执行卸载程序,一路next即可 之后将 ~/.bashrc 中原本的 source 那行注释掉 注释以下这行 至此

    2024年02月03日
    浏览(62)
  • ubuntu20.04配置OpenCV的C++环境

    这里以opencv-3.4.16为例 复现https://github.com/raulmur/ORB_SLAM2此项目,需安装opencv及其他依赖,可见README.md详情 https://opencv.org/releases/ https://github.com/opencv/opencv_contrib 如果在执行第三个命令时提示“Unable to locate package libjasper-dev”,应该是下载源的问题。解决方法如下: 然后再执行一

    2024年02月05日
    浏览(69)
  • Ubuntu20.04系统配置Pytorch环境(GPU版)

    Ubuntu和NVIDIA Driver的安装请参考其他博主的文章,主要是当时安装的时候没记录,现在不想再折腾这两个东西了。 需要补充的几个点: 安装Ubuntu系统前,多看几遍教程,如果是笔记本安装双系统,最好是看和自己品牌相同的笔记本对应的博客,因为不同厂家的BIOS设置有一些差

    2024年04月09日
    浏览(67)
  • Ubuntu 20.04下安装配置Qt开发环境的步骤

    下面是在Ubuntu 20.04下安装配置Qt开发环境的步骤: 安装Qt Creator 在终端中输入以下命令以安装Qt Creator: 在终端中输入以下命令以安装Qt 5开发库: 安装g++和gcc编译工具 配置Qt Creator 打开Qt Creator,进入“Tools”菜单,选择“Options”,在弹出的对话框中选择“Build Run”,然后选择

    2024年02月15日
    浏览(54)
  • 《Ubuntu20.04环境下的ROS进阶学习0》

            在上一专栏,我们了解了ROS的基本功能。这一专栏将会在此基础上做出进一步拓展学习。那么首先我们要学会下载并阅读别人的代码。常用的两个应用商店一个是ROS的官方应用商店ROS index,另一个就是我们熟知的github了。走,去逛逛。         这里我们先打开浏览

    2024年03月11日
    浏览(89)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包