一、前言
Zero-Shot、One-Shot和Few-Shot是机器学习领域中重要的概念,特别是在自然语言处理和计算机视觉领域。通过Zero-Shot、One-Shot和Few-Shot学习,模型可以更好地处理未知的情况和新任务,减少对大量标注数据的依赖,提高模型的适应性和灵活性。这对于推动人工智能在现实世界中的应用具有重要意义,尤其是在面对数据稀缺、标注成本高昂或需要快速适应新环境的场景下。
二、术语
2.1. Zero-shot
在零样本学习中,模型可以从未见过的类别中进行推理或分类。这意味着模型可以使用在其他类别上学到的知识来推广到新的类别,而无需在新类别上进行训练。
2.2. One-shot
在单样本学习中,模型根据非常有限的样本进行学习。通常情况下,模型只能从每个类别中获得一个样本,并且需要从这个样本中学习如何进行分类。文章来源:https://www.toymoban.com/news/detail-845981.html
2.3. Few-shot
在少样本学习中,模型可以通过很少的样本进行学习,并且能够推广到新的类别。虽然少样本学习的定义没有具体的样本数量限制,但通常指的是模型只能从每个类别中获得很少的样本(例如,几个或几十个)。文章来源地址https://www.toymoban.com/news/detail-845981.html
三、前置条件
3.1.代码测试需要提前部署AI服务
四、测试结果
4.1.魔搭创空间在线测试
到了这里,关于开源模型应用落地-qwen模型小试-Zero/One/Few Shot-进阶篇(九)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!