什么情况用Bert模型,什么情况用LLaMA、ChatGLM类大模型,咋选?

这篇具有很好参考价值的文章主要介绍了什么情况用Bert模型,什么情况用LLaMA、ChatGLM类大模型,咋选?。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

选择使用哪种大模型,如Bert、LLaMA或ChatGLM,取决于具体的应用场景和需求。下面是一些指导原则:

  1. Bert模型:Bert是一种预训练的语言模型,适用于各种自然语言处理任务,如文本分类、命名实体识别、语义相似度计算等。如果你的任务是通用的文本处理任务,而不依赖于特定领域的知识或语言风格,Bert模型通常是一个不错的选择。Bert由一个Transformer编码器组成,更适合于NLU相关的任务。

  2. LLaMA模型:LLaMA(Large Language Model Meta AI)包含从 7B 到 65B 的参数范围,训练使用多达14,000亿tokens语料,具有常识推理、问答、数学推理、代码生成、语言理解等能力。Bert由一个Transformer解码器组成。训练预料主要为以英语为主的拉丁语系,不包含中日韩文。所以适合于英文文本生成的任务。

  3. ChatGLM模型:ChatGLM是一个面向对话生成的语言模型,适用于构建聊天机器人、智能客服等对话系统。如果你的应用场景需要模型能够生成连贯、流畅的对话回复,并且需要处理对话上下文、生成多轮对话等,ChatGLM模型可能是一个较好的选择。ChatGLM的架构为Prefix decoder,训练语料为中英双语,中英文比例为1:1。所以适合于中文和英文文本生成的任务。

在选择模型时,还需要考虑以下因素:

  • 数据可用性:不同模型可能需要不同类型和规模的数据进行训练。确保你有足够的数据来训练和微调所选择的模型。

  • 计算资源:大模型通常需要更多的计算资源和存储空间。确保你有足够的硬件资源来支持所选择的模型的训练和推理。

  • 预训练和微调:大模型通常需要进行预训练和微调才能适应特定任务和领域。了解所选择模型的预训练和微调过程,并确保你有相应的数据和时间来完成这些步骤。

最佳选择取决于具体的应用需求和限制条件。在做出决策之前,建议先进行一些实验和评估,以确定哪种模型最适合你的应用场景。文章来源地址https://www.toymoban.com/news/detail-846235.html

到了这里,关于什么情况用Bert模型,什么情况用LLaMA、ChatGLM类大模型,咋选?的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 三个开源大模型(chatglm2-6B, moss, llama)-chatglm2的测试

    chatglm2-6B 是清华大学开源的一款支持中英双语的对话语言模型。经过了 1.4T 中英标识符的预训练与人类偏好对齐训练,具有62 亿参数的 ChatGLM2-6B 已经能生成相当符合人类偏好的回答。结合模型量化技术,用户可以在消费级的显卡上进行本地部署(INT4 量化级别下最低只需 6G

    2024年02月11日
    浏览(63)
  • LLaMA、Baichuan、ChatGLM、Qwen、天工等大模型对比

    12.10更新:Qwen技术报告核心解读 Baichuan 2: Open Large-scale Language Models 数据处理:数据频率和质量,使用聚类和去重方法,基于LSH和dense embedding方法 tokenizer:更好的压缩率,对数字的每一位分开,添加空格token 位置编码:7B Rope,13B ALiBi 使用了SwiGLU激活函数,因为SwiGLU是一个双线

    2024年01月17日
    浏览(52)
  • 导出LLaMA ChatGlm2等LLM模型为onnx

    通过onnx模型可以在支持onnx推理的推理引擎上进行推理,从而可以将LLM部署在更加广泛的平台上面。此外还可以具有避免pytorch依赖,获得更好的性能等优势。 这篇博客(大模型LLaMa及周边项目(二) - 知乎)进行了llama导出onnx的开创性的工作,但是依赖于侵入式修改transform

    2024年02月13日
    浏览(40)
  • 关于生成式语言大模型的一些工程思考 paddlenlp & chatglm & llama

    生成式语言大模型,随着chatgpt的爆火,市场上涌现出一批高质量的生成式语言大模型的项目。近期百度飞桨自然语言处理项目paddlenlp发布了2.6版本。更新了以下特性:全面支持主流开源大模型Bloom, ChatGLM, GLM, Llama, OPT的训练和推理;Trainer API新增张量训练能力, 简单配置即可开

    2024年02月12日
    浏览(42)
  • 为什么多数情况下GPT-3.5比LLaMA 2更便宜?

    本文旨在为用户选择合适的开源或闭源语言模型提供指导,以便在不同任务需求下获得更高的性价比。 通过测试比较 LLaMA-2 和 GPT-3.5 的成本和时延,本文作者分别计算了二者的 1000 词元成本,证明在大多数情况下,选择 GPT-3.5 的成本更低、速度更快。基于上述评估维度,作者

    2024年02月05日
    浏览(48)
  • 【LangChain学习之旅】—(7) 调用模型:使用OpenAI API还是微调开源Llama2/ChatGLM?

    Reference:LangChain 实战课 之前的内容讲了提示工程的原理以及 LangChain 中的具体使用方式。今天,我们来着重讨论 Model I/O 中的第二个子模块,LLM。 让我们带着下面的问题来开始这一节课的学习。大语言模型,不止 ChatGPT 一种。调用 OpenAI 的 API,当然方便且高效,不过,如果我

    2024年02月01日
    浏览(61)
  • LLaMA-Factory可视化界面微调chatglm2;LoRA训练微调模型 简单案例

    参考:https://github.com/huggingface/peft https://github.com/hiyouga/LLaMA-Factory 类似工具还有流萤,注意是做中文微调训练这块;来训练微调的chatglm2需要完整最新文件,不能是量化后的模型;另外测试下来显卡资源要大于20来G才能顺利,这边T4单卡训练中间显存不足,需要开启4bit量化才行

    2024年02月05日
    浏览(53)
  • LLMs:LLaMA Efficient Tuning(一款可高效微调【全参数/LoRA/QLoRA】主流大模型【ChatGLM-2/LLaMA-2/Baichuan等】的高效工具【预训练+指令监督微

    LLMs:LLaMA Efficient Tuning(一款可高效微调【全参数/LoRA/QLoRA】主流大模型【ChatGLM-2/LLaMA-2/Baichuan等】的高效工具【预训练+指令监督微调+奖励模型训练+PPO 训练+DPO 训练】)的简介、安装、使用方法之详细攻略 目录 相关文章 LLMs之ChatGLM:ChatGLM Efficient Tuning(一款高效微调ChatGLM-6B/Ch

    2024年02月08日
    浏览(41)
  • 大突破!本地大模型接入微软Autogen,多专家Agent共事成现实!支持llama2+chatglm,附代码!

    跑通!跑通!全程跑通! 雄哥认为未来agent的终局大概率是一个人,管理部门多个AI Agent同时工作,人力将解放! 想象一下,你翘个二郎腿,偌大的办公室,只有你一个人,喊一句:“做个月度计划”,他自动分析上月数据,整合现有资源,做本月的规划,人场地资金!做完

    2024年02月06日
    浏览(60)
  • LLMs:LLaMA Efficient Tuning(一款可高效微调【全参数/LoRA/QLoRA】主流大模型【ChatGLM2/LLaMA2/Baichuan等】的高效工具【预训练+指令监督微调+

    LLMs:LLaMA Efficient Tuning(一款可高效微调【全参数/LoRA/QLoRA】主流大模型【ChatGLM-2/LLaMA-2/Baichuan等】的高效工具【预训练+指令监督微调+奖励模型训练+PPO 训练+DPO 训练】)的简介、安装、使用方法之详细攻略 目录 相关文章 LLMs之ChatGLM:ChatGLM Efficient Tuning(一款高效微调ChatGLM-6B/Ch

    2024年02月09日
    浏览(67)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包