[C++]使用OpenCV去除面积较小的连通域

这篇具有很好参考价值的文章主要介绍了[C++]使用OpenCV去除面积较小的连通域。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

这是后期补充的部分,和前期的代码不太一样

效果图

[C++]使用OpenCV去除面积较小的连通域,C/C++,c++,opencv,开发语言

源代码

//测试
void CCutImageVS2013Dlg::OnBnClickedTestButton1()
{
	vector<vector<Point> > contours;  //轮廓数组
	vector<Point2d> centers;    //轮廓质心坐标 
	vector<vector<Point> >::iterator itr; //轮廓迭代器
	vector<Point2d>::iterator itrc;  //质心坐标迭代器
	vector<vector<Point> > con;   //当前轮廓

	double area;
	double minarea = 1000;
	double maxarea = 0;
	Moments mom;       // 轮廓矩
	Mat image, gray, edge, dst;
	image = imread("D:\\66.png");
	cvtColor(image, gray, COLOR_BGR2GRAY);
	Mat rgbImg(gray.size(), CV_8UC3); //创建三通道图
	blur(gray, edge, Size(3, 3));       //模糊去噪
	threshold(edge, edge, 200, 255, THRESH_BINARY_INV); //二值化处理,黑底白字
	//--------去除较小轮廓,并寻找最大轮廓--------------------------
	findContours(edge, contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE); //寻找轮廓
	itr = contours.begin();    //使用迭代器去除噪声轮廓
	while (itr != contours.end())
	{
		area = contourArea(*itr);  //获得轮廓面积
		if (area<minarea)    //删除较小面积的轮廓 
		{
			itr = contours.erase(itr); //itr一旦erase,需要重新赋值
		}
		else
		{
			itr++;
		}
		if (area>maxarea)    //寻找最大轮廓
		{
			maxarea = area;
		}
	}
	dst = Mat::zeros(image.rows, image.cols, CV_8UC3);
	/*绘制连通区域轮廓,计算质心坐标*/
	Point2d center;
	itr = contours.begin();
	while (itr != contours.end())
	{
		area = contourArea(*itr);		
		con.push_back(*itr);   //获取当前轮廓
		if (area == maxarea)
		{
			vector<Rect> boundRect(1); //定义外接矩形集合
			boundRect[0] = boundingRect(Mat(*itr));
			cvtColor(gray, rgbImg, COLOR_GRAY2BGR);
			Rect select;
			select.x = boundRect[0].x;
			select.y = boundRect[0].y;
			select.width = boundRect[0].width;
			select.height = boundRect[0].height;
			rectangle(rgbImg, select, Scalar(0, 255, 0), 3, 2); //用矩形画矩形窗
			drawContours(dst, con, -1, Scalar(0, 0, 255), 2); //最大面积红色绘制
		}
		else
			drawContours(dst, con, -1, Scalar(255, 0, 0), 2); //其它面积蓝色绘制
		con.pop_back();
		//计算质心
		mom = moments(*itr);
		center.x = (int)(mom.m10 / mom.m00);
		center.y = (int)(mom.m01 / mom.m00);
		centers.push_back(center);
		itr++;
	}
	imshow("rgbImg", rgbImg);
	//imshow("gray", gray);
	//imshow("edge", edge);
	imshow("origin", image);
	imshow("connected_region", dst);
	waitKey(0);
	return;
}

前期做的,方法可能不太一样

一,先看效果图

原图

[C++]使用OpenCV去除面积较小的连通域,C/C++,c++,opencv,开发语言

处理前后图

[C++]使用OpenCV去除面积较小的连通域,C/C++,c++,opencv,开发语言 

二,实现源代码

//=======函数实现=====================================================================
void RemoveSmallRegion(Mat &Src, Mat &Dst, int AreaLimit, int CheckMode, int NeihborMode)
{
	int RemoveCount = 0;
	//新建一幅标签图像初始化为0像素点,为了记录每个像素点检验状态的标签,0代表未检查,1代表正在检查,2代表检查不合格(需要反转颜色),3代表检查合格或不需检查 
	//初始化的图像全部为0,未检查 
	Mat PointLabel = Mat::zeros(Src.size(), CV_8UC1);
	if (CheckMode == 1)//去除小连通区域的白色点 
	{
		//cout << "去除小连通域.";
		for (int i = 0; i < Src.rows; i++)
		{
			for (int j = 0; j < Src.cols; j++)
			{
				if (Src.at<uchar>(i, j) < 10)
				{
					PointLabel.at<uchar>(i, j) = 3;//将背景黑色点标记为合格,像素为3 
				}
			}
		}
	}
	else//去除孔洞,黑色点像素 
	{
		//cout << "去除孔洞";
		for (int i = 0; i < Src.rows; i++)
		{
			for (int j = 0; j < Src.cols; j++)
			{
				if (Src.at<uchar>(i, j) > 10)
				{
					PointLabel.at<uchar>(i, j) = 3;//如果原图是白色区域,标记为合格,像素为3 
				}
			}
		}
	}
	vector<Point2i>NeihborPos;//将邻域压进容器 
	NeihborPos.push_back(Point2i(-1, 0));
	NeihborPos.push_back(Point2i(1, 0));
	NeihborPos.push_back(Point2i(0, -1));
	NeihborPos.push_back(Point2i(0, 1));
	if (NeihborMode == 1)
	{
		//cout << "Neighbor mode: 8邻域." << endl;
		NeihborPos.push_back(Point2i(-1, -1));
		NeihborPos.push_back(Point2i(-1, 1));
		NeihborPos.push_back(Point2i(1, -1));
		NeihborPos.push_back(Point2i(1, 1));
	}
	else int a = 0;//cout << "Neighbor mode: 4邻域." << endl;
	int NeihborCount = 4 + 4 * NeihborMode;
	int CurrX = 0, CurrY = 0;
	//开始检测 
	for (int i = 0; i < Src.rows; i++)
	{
		for (int j = 0; j < Src.cols; j++)
		{
			if (PointLabel.at<uchar>(i, j) == 0)//标签图像像素点为0,表示还未检查的不合格点 
			{ //开始检查 
				vector<Point2i>GrowBuffer;//记录检查像素点的个数 
				GrowBuffer.push_back(Point2i(j, i));
				PointLabel.at<uchar>(i, j) = 1;//标记为正在检查 
				int CheckResult = 0;
				for (int z = 0; z < GrowBuffer.size(); z++)
				{
					for (int q = 0; q < NeihborCount; q++)
					{
						CurrX = GrowBuffer.at(z).x + NeihborPos.at(q).x;
						CurrY = GrowBuffer.at(z).y + NeihborPos.at(q).y;
						if (CurrX >= 0 && CurrX<Src.cols&&CurrY >= 0 && CurrY<Src.rows) //防止越界 
						{
							if (PointLabel.at<uchar>(CurrY, CurrX) == 0)
							{
								GrowBuffer.push_back(Point2i(CurrX, CurrY)); //邻域点加入buffer 
								PointLabel.at<uchar>(CurrY, CurrX) = 1;   //更新邻域点的检查标签,避免重复检查 
							}
						}
					}
				}
				if (GrowBuffer.size()>AreaLimit) //判断结果(是否超出限定的大小),1为未超出,2为超出 
					CheckResult = 2;
				else
				{
					CheckResult = 1;
					RemoveCount++;//记录有多少区域被去除 
				}
				for (int z = 0; z < GrowBuffer.size(); z++)
				{
					CurrX = GrowBuffer.at(z).x;
					CurrY = GrowBuffer.at(z).y;
					PointLabel.at<uchar>(CurrY, CurrX) += CheckResult;//标记不合格的像素点,像素值为2 
				}
				//********结束该点处的检查********** 
			}
		}
	}
	CheckMode = 255 * (1 - CheckMode);
	//开始反转面积过小的区域 
	for (int i = 0; i < Src.rows; ++i)
	{
		for (int j = 0; j < Src.cols; ++j)
		{
			if (PointLabel.at<uchar>(i, j) == 2)
			{
				Dst.at<uchar>(i, j) = CheckMode;
			}
			else if (PointLabel.at<uchar>(i, j) == 3)
			{
				Dst.at<uchar>(i, j) = Src.at<uchar>(i, j);
			}
		}
	}
	//cout << RemoveCount << " objects removed." << endl;
}
//=======函数实现=====================================================================
//=======调用函数=====================================================================
	Mat img;
	img = imread("D:\\1_1.jpg", 0);//读取图片
	threshold(img, img, 128, 255, CV_THRESH_BINARY_INV);
	imshow("去除前", img);
	Mat img1;
	RemoveSmallRegion(img, img, 200, 0, 1);
	imshow("去除后", img);
	waitKey(0);
//=======调用函数=====================================================================

 文章来源地址https://www.toymoban.com/news/detail-846291.html

 

 

到了这里,关于[C++]使用OpenCV去除面积较小的连通域的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 使用OpenCV实现图像背景去除

    使用OpenCV实现图像背景去除 在图像处理领域,常常需要从原始图像中分离出某个对象,而去除背景是实现这一目标的一种基本方法。本文将介绍如何使用OpenCV库中的GrabCut算法来进行图像背景去除,并提供相应的Python代码。 GrabCut算法是一种基于图论的交互式前景提取算法,它

    2024年02月15日
    浏览(64)
  • Python抠图:使用OpenCV实现背景去除

    抠图(Matting)是图像处理领域的重要任务之一,旨在将对象与其它部分分离。OpenCV是一个开源计算机视觉库,它提供了丰富的函数和工具进行图像编辑处理,可以简单而快速地实现抠图功能,同时可以进行更多的图像处理、分析。下面我们将基于OpenCV,详细介绍如何使用Py

    2024年02月08日
    浏览(44)
  • 使用OpenCV与深度学习去除图像背景:Python实现指南

    第一部分:简介和OpenCV的背景去除 在现代的图像处理和计算机视觉应用中,背景去除是一个常见的需求。这不仅用于产品摄影和电商平台,还广泛应用于各种图像分析任务。在这篇文章中,我们将使用OpenCV和深度学习技术来实现此功能,并通过Python进行实现。本教程会介绍两

    2024年01月20日
    浏览(46)
  • 使用 OpenCV 和 GrabCut 算法进行交互式背景去除

            我想,任何人都可以尝试从图像中删除背景。当然,有大量可用的软件或工具能够做到这一点,但其中一些可能很昂贵。但是,我知道有人使用窗口绘画3D魔术选择或PowerPoint背景去除来删除背景。         如果您是计算机视觉领域的初学者,这可能适合您。让

    2024年02月15日
    浏览(50)
  • 在python中使用opencv进行dft和idft去除图像条纹

    首先加载图像,然后进行dft计算频谱图,之后使用掩膜,将竖条纹的频谱信号去除,再逆变换还原为图像,示例图像中为竖向条纹,在频谱图中表现在X轴上 结果如下 中间需要保留通过的半径根据需要调整,我的代码中写为了图像宽度的1/16 以此篇文章作为学习记录

    2024年04月28日
    浏览(42)
  • OpenCV——图像连通域分析

       cv::connectedComponents 函数将二值图像分割成多个连通区域,每个连通区域被赋予一个唯一的标签。函数的返回值为标签数目。该函数的原型如下: image :输入图像。 labels :输出的连通区域标签图像。 connectivity :为连通性。 ltype :输出图像的数据类型。 cv::connectedCompon

    2024年02月11日
    浏览(49)
  • OpenCV16-图像连通域分析

    连通域是指图像中具有相同像素值并且位置相邻的像素组成的区域。连通域分析是指在图像中寻找彼此互相独立的连通域并将其标记出来。 4邻域与8邻域的概念:点 P 0 ( x , y ) P_0(x,y) P 0 ​ ( x , y ) 的4邻域为其上下左右4个像素点,其8邻域为上下左右再加上对角线方向的4个点。

    2024年02月06日
    浏览(43)
  • OpenCV(二十八):连通域分割

    目录 1.介绍连通域分割 2.像素领域介绍 3.两遍法分割连通域 4.连通域分割函数 1.介绍连通域分割        连通域分割是一种图像处理技术,用于将图像中的相邻像素组成的区域划分为不同的连通域。这些像素具有相似的特性,如相近的灰度值或颜色。连通域分割可以用于物体

    2024年02月09日
    浏览(47)
  • opencv连通域标记 connectedComponentsWithStats()函数

    1.背景 由于需要将图像中的目标提取出来,采用了先分割得到二值化图,然后再进行连通域统计找到最大的连通域,计算其外接矩形作为目标框的方法。 2.函数定义 通过搜索,发现在OpenCV 3中提供了连通域标记相关的两个很好的函数,分别是 cv:: connectedComponents() 和cv:: connec

    2024年02月16日
    浏览(39)
  • python opencv之图像分割、计算面积

    以下代码是一个基于K-means聚类算法进行图像分割的实现。通过读取一个彩色图像,将其转化为二维数组形式。然后使用K-means算法对像素点进行聚类,聚类个数为7。根据聚类后的标签值对像素点进行着色,并创建掩膜图像。接着使用形态学开运算和闭运算去掉周围的绿色点和

    2024年02月06日
    浏览(38)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包