对SLAM中变换矩阵T的理解

这篇具有很好参考价值的文章主要介绍了对SLAM中变换矩阵T的理解。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


前言

学SLAM一直折腾不清楚变换矩阵T or 旋转矩阵R的物理意义(主要是总是搞不清这个变换矩阵是从A到B还是B到A,当然他们之间只差一个逆就是了),于是花时间探究整理了一下,主要定义来自SLAM十四讲,和其他教材定义冲突请以具体情况为准。


正篇

1.变换矩阵T与点(常见的说法)

首先明确一点,对于空间中一点 X X X,以及坐标系A与坐标系B,以下说法等价(说的是一个东西):
1.把 X X X在A下的坐标 x A x_A xA变换到 X X X在B下的坐标 x B x_B xB的变换矩阵 T T T
2.从A到B的变换矩阵 T B A T_{BA} TBA
3.以坐标系A为基础(参考坐标系),坐标系B的变换矩阵 T T T

其中1的说法是有明确数学阐述的,即 x B = T x A x_B = Tx_A xB=TxA。其他两个说法也较为常见,遇见时转化成1的说法去理解和应用即可。对于说法3,其实默认将变换矩阵 T T T作为坐标系B的一种描述了,换句话说,只要给定了基础(参考)坐标系,变换矩阵 T T T可以唯一确定坐标系B,坐标系B也可以确定一个变换矩阵 T T T

2.变换矩阵T与坐标系(直观理解变换矩阵描述的变换)

上面的说法其实只给出了变换矩阵 T T T对点的作用,现在考虑对坐标系的作用(即对坐标系基的作用),便于直观理解变换矩阵 T T T是个怎样的变换(这里直接给出结论):

设变换矩阵 T T T的旋转部分(旋转矩阵)为 R R R,平移部分为 t t t,则分情况:
1.当 t ≠ 0 t \neq 0 t=0 时,只关注平移部分 t t t即可简单区分,即坐标系B的原点坐标即为 − t -t t
2.当 t = 0 t = 0 t=0 时,显然有 x B = R x A x_B = Rx_A xB=RxA,且坐标系B的基在坐标系A下的坐标写成列向量,并起来就会形成矩阵 R − 1 R^{-1} R1

也就是说,直接看 R − 1 R^{-1} R1就可以知道坐标系B是什么样子,自然就可以直观理解从从A到B的变换矩阵 T T T是个什么样的变换了。文章来源地址https://www.toymoban.com/news/detail-846331.html

到了这里,关于对SLAM中变换矩阵T的理解的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • MIT线性代数笔记-第31讲-线性变换及对应矩阵

    线性变换相当于是矩阵的抽象表示,每个线性变换都对应着一个矩阵 例: 考虑一个变换 T T T ,使得平面上的一个向量投影为平面上的另一个向量,即 T : R 2 → R 2 T:R^2 to R^2 T : R 2 → R 2 ,如图: ​   图中有两个任意向量 v ⃗ , w ⃗ vec{v} , vec{w} v , w 和一条直线,作 v ⃗

    2024年02月03日
    浏览(58)
  • 线性代数|推导:线性变换与在基下的矩阵一一对应

    前置定义 1 设 T T T 是线性空间 V n V_n V n ​ 中的线性变换,在 V n V_n V n ​ 中取定一个基 α 1 , α 2 , ⋯   , α n boldsymbol{alpha}_1,boldsymbol{alpha}_2,cdots,boldsymbol{alpha}_n α 1 ​ , α 2 ​ , ⋯ , α n ​ ,如果这个基在变换 T T T 下的像(用这个基线性表示)为 { T ( α 1 ) = a 11 α 1 +

    2024年02月04日
    浏览(58)
  • 高等代数(八)-线性变换07:矩阵的有理标准形

    § 7 矩阵的有理标准形 前一节中证明了复数域上任一矩阵 A boldsymbol{A} A 可相似于一个若尔当形矩阵, 这一节将对任意数域 P P P 来讨论类似的问题. 我们证明 P P P 上任一矩阵必相似于一个有理标准形矩阵. 定义 8 对数域 P P P 上的一个多项式 d ˙ ( λ ˙ ) = λ n ˙ + a 1 λ n − 1 + ⋯

    2024年02月19日
    浏览(48)
  • 高等代数(八)-线性变换02:λ-矩阵在初等变换下的标准形

    § 2 λ § 2 lambda §2 λ -矩阵在初等变换下的标准形 λ lambda λ -矩阵也可以有初等变换. 定义 3 下面的三种变换叫做 λ lambda λ -矩阵的初等变换: 矩阵的两行 (列) 互换位置; 矩阵的某一行 (列) 乘非零常数 c c c ; 矩阵的某一行 (列) 加另一行 (列) 的 φ ( λ ) varphi(lambda) φ ( λ ) 倍

    2024年02月19日
    浏览(47)
  • 【理解线性代数】(四)线性运算的推广与矩阵基础

    工业生产的发展趋势总是从单件生产到批量生产。科学技术研究也是一样,总是从简单计算到复合运算、批量运算。批量意味着生产能力、处理能力的提升。计算机从16位发展到64位,从单核发展到多核;计算机从CPU处理数据发展到GPU处理数据;大数据、人工智能领域的大模型

    2024年02月09日
    浏览(52)
  • 线性代数中涉及到的matlab命令-第三章:矩阵的初等变换及线性方程组

    目录 1,矩阵的初等变换 1.1,初等变换 1.2,增广矩阵  ​1.3,定义和性质 1.4,行阶梯型矩阵、行最简型矩阵 1.5,标准形矩阵  1.6,矩阵初等变换的性质  2,矩阵的秩  3,线性方程组的解  初等变换包括三种:交换行或列、某行或列乘以一个非零系数、某行或列加上零一行

    2024年02月04日
    浏览(51)
  • MIT线性代数笔记-第27讲-复数矩阵,快速傅里叶变换

    对于实矩阵而言,特征值为复数时,特征向量一定为复向量,由此引入对复向量的学习 求模长及内积 假定一个复向量 z ⃗ = [ z 1 z 2 ⋮ z n ] vec{z} = begin{bmatrix} z_1 \\\\ z_2 \\\\ vdots\\\\ z_n end{bmatrix} z = ​ z 1 ​ z 2 ​ ⋮ z n ​ ​ ​ ,其中 z 1 , z 2 , ⋯   , z n z_1 , z_2 , cdots , z_n z 1 ​

    2024年02月05日
    浏览(53)
  • 【线性代数】从矩阵分块的角度理解矩阵乘法

    概念: 例: 1. 分块矩阵计算的数学步骤 使用Numpy计算例1 按列分块 按行分块 分块后的计算公式 矩阵分块法提供了行数和列数较多的矩阵相乘的一种计算方法,以此来简化矩阵相乘的运算次数; 按行列分块将矩阵A分为n个列向量和m个行向量,利用矩阵乘法的定义,殊途同归

    2024年02月13日
    浏览(69)
  • MIT_线性代数笔记:第 26 讲 复矩阵;快速傅里叶变换

    实矩阵也可能有复特征值,因此无法避免在矩阵运算中碰到复数,本讲学习处理复数矩阵和复向量。 最重要的复矩阵是傅里叶矩阵,它用于傅里叶变换。而对于大数据处理快速傅里叶变换(FFT)显得更为重要,它将傅立叶变换的矩阵乘法中运算的次数从 n 2 n^2 n 2 次降至 n l

    2024年01月17日
    浏览(45)
  • 【理解线性代数】(四)从向量组点乘到矩阵相乘

    工业生产的发展趋势总是从单件生产到批量生产。科学技术研究也是一样,总是从简单计算到复合运算、批量运算。批量意味着生产能力、处理能力的提升。计算机从16位发展到64位,从单核发展到多核;计算机从CPU处理数据发展到GPU处理数据;大数据、人工智能领域的大模型

    2024年02月09日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包