基于opencv的猫脸识别模型

这篇具有很好参考价值的文章主要介绍了基于opencv的猫脸识别模型。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

opencv介绍

OpenCV的全称是Open Source Computer Vision Library,是一个跨平台的计算机视觉库。OpenCV是由英特尔公司发起并参与开发,以BSD许可证授权发行,可以在商业和研究领域中免费使用。OpenCV可用于开发实时的图像处理、计算机视觉以及模式识别程序。该程序库也可以使用英特尔公司的IPP进行加速处理。

读取图片

opoencv提供相应的函数方便我们读取相关图片,打开并展示他

#导入cv模块
import cv2 as cv
#读取图片
img = cv.imread('face1.jpg')
#显示图片
cv.imshow('read_img',img)
#等待
cv.waitKey(0)
#释放内存
cv.destroyAllWindows()

灰度转换

首先我们介绍一下灰度图像,看看他的定义:

在电子计算机领域中,灰度(Gray scale)数字图像是每个像素只有一个采样颜色的图像。这类图像通常显示为从最暗黑色到最亮的白色的灰度,尽管理论上这个采样可以是任何颜色的不同深浅,甚至可以是不同亮度上的不同颜色。灰度图像与黑白图像不同,在计算机图像领域中黑白图像只有黑白两种颜色,灰度图像在黑色与白色之间还有许多级的颜色深度。

通俗的讲灰度图像就是把每个像素只有一个颜色的图像,一般来讲都是黑白;那么我们为什么需要将普通图像转化为灰度图像呢?

因为彩色图像中的每个像素颜色由R、G、B三个分量来决定,而每个分量的取值范围都在0-255之间,这样对计算机来说,彩色图像的一个像素点就会有256256256=16777216种颜色的变化范围;而灰度图像是R、G、B分量相同的一种特殊彩色图像,对计算机来说,一个像素点的变化范围只有0-255这256种。彩色图片的信息含量过大,而进行图片识别时,其实只需要使用灰度图像里的信息就足够了,所以图像灰度化的目的就是为了提高运算速度。
当然,有时图片进行了灰度处理后还是很大,也有可能会采用二值化图像(即像素值只能为0或1)。

我们可以通过调用opencv的函数库来实现灰度的转化

#导入cv模块
import cv2 as cv
#读取图片
img = cv.imread('face1.jpg')
#灰度转换
gray_img = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
#显示灰度图片
cv.imshow('gray',gray_img)
#保存灰度图片
cv.imwrite('gray_face1.jpg',gray_img)
#显示图片
cv.imshow('read_img',img)
#等待
cv.waitKey(0)
#释放内存
cv.destroyAllWindows()

修改尺寸

除了灰度转化的函数,opencv还为我们提供了图像修改相关的函数,这里简单介绍下

#导入cv模块
import cv2 as cv
#读取图片
img = cv.imread('face1.jpg')
#修改尺寸
resize_img = cv.resize(img,dsize=(200,200))
#显示原图
cv.imshow('img',img)
#显示修改后的
cv.imshow('resize_img',resize_img)
#打印原图尺寸大小
print('未修改:',img.shape)
#打印修改后的大小
print('修改后:',resize_img.shape)
#等待
while True:
    if ord('q') == cv.waitKey(0):
        break
#释放内存
cv.destroyAllWindows()

绘制矩形

在识别到我们想识别的物体后,需要用矩形将他绘制出来,我们这里提供一下相关的函数接口

#导入cv模块
import cv2 as cv
#读取图片
img = cv.imread('face1.jpg')
#坐标
x,y,w,h = 100,100,100,100
#绘制矩形
cv.rectangle(img,(x,y,x+w,y+h),color=(0,0,255),thickness=1)
#绘制圆形
cv.circle(img,center=(x+w,y+h),radius=100,color=(255,0,0),thickness=5)
#显示
cv.imshow('re_img',img)
while True:
    if ord('q') == cv.waitKey(0):
        break
#释放内存
cv.destroyAllWindows()

猫脸检测

我们这里用到opencv自带的文件来构建我们的检测模型,从而从图像上迅速识别到猫脸,以下代码是用的人脸识别的文件,如果要做测试可以把 haarcascade_frontalface_alt2.xml 换成猫脸相关的xml文件

#导入cv模块
import cv2 as cv
#检测函数
def face_detect_demo():
    gary = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
    face_detect = cv.CascadeClassifier(r'C:\Users\33718\Desktop\face\opencv\data\haarcascades\haarcascade_frontalface_alt2.xml')
    face = face_detect.detectMultiScale(gary,1.01,5,0,(100,100),(300,300))
    for x,y,w,h in face:
        cv.rectangle(img,(x,y),(x+w,y+h),color=(0,0,255),thickness=2)
    cv.imshow('result',img)

#读取图像
img = cv.imread(r'C:\Users\33718\Desktop\face\opencv\data\jm\1.lena.jpg')
#检测函数
face_detect_demo()
#等待
while True:
    if ord('q') == cv.waitKey(0):
        break
#释放内存
cv.destroyAllWindows()

训练数据

我们事先准备数据,并且按照如下格式命名:
基于opencv的猫脸识别模型,人工智能,opencv,人工智能,计算机视觉
然后我们运行以下代码,就能获得一个训练好的yml文件

import os
import cv2
import sys
from PIL import Image
import numpy as np

def getImageAndLabels(path):
    facesSamples=[]
    ids=[]
    imagePaths=[os.path.join(path,f) for f in os.listdir(path)]
    #检测猫脸
    face_detector =  cv2.CascadeClassifier('C:/Users/33718/Desktop/face/catface/data/haarcascades/haarcascade_frontalcatface_extended.xml')
    #打印数组imagePaths
    print('数据排列:',imagePaths)
    #遍历列表中的图片
    for imagePath in imagePaths:
        #打开图片,黑白化
        PIL_img=Image.open(imagePath).convert('L')
        #将图像转换为数组,以黑白深浅
       # PIL_img = cv2.resize(PIL_img, dsize=(400, 400))
        img_numpy=np.array(PIL_img,'uint8')
        #获取图片人脸特征
        faces = face_detector.detectMultiScale(img_numpy)
        #获取每张图片的id和姓名
        id = int(os.path.split(imagePath)[1].split('.')[0])
        #预防无面容照片
        for x,y,w,h in faces:
            ids.append(id)
            facesSamples.append(img_numpy[y:y+h,x:x+w])
        #打印脸部特征和id
        #print('fs:', facesSamples)
        print('id:', id)
        # print('fs:', facesSamples[id])
    print('fs:', facesSamples)
    #print('脸部例子:',facesSamples[0])
    #print('身份信息:',ids[0])
    return facesSamples,ids

if __name__ == '__main__':
    #图片路径
    path='./data/photos/'
    #获取图像数组和id标签数组和姓名
    faces,ids=getImageAndLabels(path)
    #获取训练对象
    recognizer=cv2.face.LBPHFaceRecognizer_create()
    #recognizer.train(faces,names)#np.array(ids)
    recognizer.train(faces,np.array(ids))
    #保存文件
    recognizer.write('trainer/trainerCat.yml')
    #save_to_file('names.txt',names)

猫脸检测

最后我们就可以检测猫猫的图像了,以下是效果图:
基于opencv的猫脸识别模型,人工智能,opencv,人工智能,计算机视觉

import cv2
import numpy as np
import os
# coding=utf-8
import urllib
import urllib.request
import hashlib

#加载训练数据集文件
recogizer=cv2.face.LBPHFaceRecognizer_create()
recogizer.read('trainer/trainerCat.yml')
names=[]
warningtime = 0

from PIL import Image, ImageDraw, ImageFont
def cv2ImgAddText(img, text, left, top, textColor=(0, 255, 0), textSize=20):
    if (isinstance(img, np.ndarray)):  # 判断是否OpenCV图片类型
        img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
    # 创建一个可以在给定图像上绘图的对象
    draw = ImageDraw.Draw(img)
    # 字体的格式
    fontStyle = ImageFont.truetype(
        "STSONG.TTF", textSize, encoding="utf-8")
    # 绘制文本
    draw.text((left, top), text, textColor, font=fontStyle)
    # 转换回OpenCV格式
    return cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR)

#准备识别的图片
def face_detect_demo(img):
    gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)#转换为灰度
    # 这里要写绝对路径
    face_detector=cv2.CascadeClassifier('C:/Users/33718/Desktop/face/catface/data/haarcascades/haarcascade_frontalcatface_extended.xml')
    # face=face_detector.detectMultiScale(gray,1.1,5,cv2.CASCADE_SCALE_IMAGE,(100,100),(300,300))
    face=face_detector.detectMultiScale(gray,1.1,5,cv2.CASCADE_SCALE_IMAGE,)
    #face=face_detector.detectMultiScale(gray)
    for x,y,w,h in face:
        cv2.rectangle(img,(x,y),(x+w,y+h),color=(0,0,255),thickness=2)
        cv2.circle(img,center=(x+w//2,y+h//2),radius=w//2,color=(0,255,0),thickness=1)
        # 人脸识别
        ids, confidence = recogizer.predict(gray[y:y + h, x:x + w])
        #print('标签id:',ids,'置信评分:', confidence)
        if confidence < 60:
            global warningtime
            warningtime += 1
            if warningtime > 100:
               # warning()
               warningtime = 0
            cv2.putText(img, 'unkonw', (x + 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 255, 0), 1)
        else:
            img = cv2ImgAddText(img, str(names[ids-1]), x + 10, y - 10, (255, 0, 0), 30)
            # cv2.putText(img,str(names[ids-1]), (x + 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 255, 0), 1)
    cv2.imshow('result',img)
    #print('bug:',ids)

def name():
    path = './data/photos/'
    #names = []
    imagePaths=[os.path.join(path,f) for f in os.listdir(path)]
    for imagePath in imagePaths:
       name = str(os.path.split(imagePath)[1].split('.',2)[1])
       names.append(name)


name()

# 摄像头检测
# cap=cv2.VideoCapture(0)
# cap = cv2.VideoCapture('1.mp4')
# while True:
#     flag,frame=cap.read()
#     if not flag:
#         break
#     face_detect_demo(frame)
#     if ord(' ') == cv2.waitKey(10):
#         break


frame = cv2.imread('1.jpg')
while True:
    # 调用人脸检测函数
    face_detect_demo(frame)

    # 等待按键或者一段时间后继续下一次循环
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

源码链接

GitHub

Gitee

🌈🌈🌈
如果对各位看官有帮助,还请看官们点个关注,阿里嘎多~
🌙🌙🌙
代码的路径要换成你自己的绝对路径,opencv的函数只能识别绝对路径,起码我的版本是这样。文章来源地址https://www.toymoban.com/news/detail-846335.html

到了这里,关于基于opencv的猫脸识别模型的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 人工智能图像识别分析之——Yolov5模型训练

    上一课讲述了Yolov5模型环境搭建的过程 这一课讲Yolov5模型训练的过程 进行模型训练前,首先要先进行样本标注,标注后产生标注文件,将图片源文件和标注文件进行文件划分,本文以2000张负样本进行训练。 1.新建三级目录datasets/images/train、datasets/images/val 2.新建三级目录da

    2024年02月01日
    浏览(70)
  • OpenAI的人工智能语音识别模型Whisper详解及使用

            拥有ChatGPT语言模型的OpenAI公司,开源了 Whisper 自动语音识别系统,OpenAI 强调 Whisper 的语音识别能力已达到人类水准。         Whisper是一个通用的语音识别模型,它使用了大量的多语言和多任务的监督数据来训练,能够在英语语音识别上达到接近人类水平的鲁

    2024年02月09日
    浏览(58)
  • 基于Solr的智能化人工智能与智能图像识别

    作者:禅与计算机程序设计艺术 引言 1.1. 背景介绍 随着人工智能技术的快速发展,人工智能与图像识别应用越来越广泛。在实际应用中,基于Solr的智能化人工智能与智能图像识别技术具有很高的实用价值和可行性。 1.2. 文章目的 本文旨在讲解如何基于Solr实现智能化人工智

    2024年02月07日
    浏览(63)
  • 构建基于AWSLambda的人工智能应用:语音识别、图像识别和自然语言处理

    作者:禅与计算机程序设计艺术 在人工智能领域,用大数据、机器学习等方法来解决复杂的问题,已经成为越来越多企业和开发者关注的问题。但是,如何把这些方法落地到生产环境中,仍然是一个难题。 随着云计算平台的广泛普及,AWS Lambda作为一项服务正在成为各个公司

    2024年02月09日
    浏览(72)
  • 人工智能(pytorch)搭建模型8-利用pytorch搭建一个BiLSTM+CRF模型,实现简单的命名实体识别

    大家好,我是微学AI,今天给大家介绍一下人工智能(pytorch)搭建模型8-利用pytorch搭建一个BiLSTM+CRF模型,实现简单的命名实体识别,BiLSTM+CRF 模型是一种常用的序列标注算法,可用于词性标注、分词、命名实体识别等任务。本文利用pytorch搭建一个BiLSTM+CRF模型,并给出数据样例,

    2024年02月09日
    浏览(57)
  • 毕业设计:基于深度学习的图像分类识别系统 人工智能

    目录 前言 项目背景 数据集 设计思路 自注意力 网络模型 实验环境 实验结果分析 更多帮助     📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课

    2024年04月16日
    浏览(90)
  • AI人工智能课题:图像识别红酒识别系统的设计与实现(基于百度智能云AI接口)

     博主介绍 :黄菊华老师《Vue.js入门与商城开发实战》《微信小程序商城开发》图书作者,CSDN博客专家,在线教育专家,CSDN钻石讲师;专注大学生毕业设计教育和辅导。 所有项目都配有从入门到精通的基础知识视频课程,免费 项目配有对应开发文档、开题报告、任务书、

    2024年02月04日
    浏览(59)
  • AI人工智能课题:图像识别地标识别系统的设计与实现(基于百度智能云AI接口)

     博主介绍 :黄菊华老师《Vue.js入门与商城开发实战》《微信小程序商城开发》图书作者,CSDN博客专家,在线教育专家,CSDN钻石讲师;专注大学生毕业设计教育和辅导。 所有项目都配有从入门到精通的基础知识视频课程,免费 项目配有对应开发文档、开题报告、任务书、

    2024年02月04日
    浏览(60)
  • AI人工智能课题:图像识别货币识别系统的设计与实现(基于百度智能云AI接口)

     博主介绍 :黄菊华老师《Vue.js入门与商城开发实战》《微信小程序商城开发》图书作者,CSDN博客专家,在线教育专家,CSDN钻石讲师;专注大学生毕业设计教育和辅导。 所有项目都配有从入门到精通的基础知识视频课程,免费 项目配有对应开发文档、开题报告、任务书、

    2024年02月04日
    浏览(64)
  • AI人工智能课题:图像识别菜品识别系统的设计与实现(基于百度智能云AI接口)

     博主介绍 :黄菊华老师《Vue.js入门与商城开发实战》《微信小程序商城开发》图书作者,CSDN博客专家,在线教育专家,CSDN钻石讲师;专注大学生毕业设计教育和辅导。 所有项目都配有从入门到精通的基础知识视频课程,免费 项目配有对应开发文档、开题报告、任务书、

    2024年02月03日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包