【论文速读】| 对大语言模型解决攻击性安全挑战的实证评估

这篇具有很好参考价值的文章主要介绍了【论文速读】| 对大语言模型解决攻击性安全挑战的实证评估。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

【论文速读】| 对大语言模型解决攻击性安全挑战的实证评估,论文速读/精读,语言模型,安全,人工智能

本次分享论文为:An Empirical Evaluation of LLMs for Solving Offensive Security Challenges

基本信息

原文作者:Minghao Shao, Boyuan Chen, Sofija Jancheska, Brendan Dolan-Gavitt, Siddharth Garg, Ramesh Karri, Muhammad Shafique

作者单位:纽约大学、纽约大学阿布扎比分校

关键词:大语言模型,网络安全,攻击性挑战,CTF竞赛

原文链接:

https://arxiv.org/pdf/2402.11814v1.pdf

开源代码:

https://github.com/NickNameInvalid/LLM_CTF

论文要点

论文简介:随着大语言模型(LLMs)技术的日益兴起,它们在理解和解决CTF(Capture The Flag)挑战方面的应用也逐渐增多。然而,尚未有研究对LLMs在完全自动化流程中解决CTF挑战的有效性进行全面评估。为此,本研究旨在探索LLMs在该领域的应用潜力,并设计了两种CTF解题流程:人机交互式(HITL)和完全自动化。这两种流程的目的是评估LLMs在处理一系列特定CTF挑战时的性能,这些挑战通过提供相关问题信息来激发模型的解题过程。通过与人类参赛者在相同挑战上的表现进行对比,研究者观察到LLMs的解题成功率已超过普通人类参赛者。本研究全面评价了LLMs在解决现实世界中的CTF挑战能力,并覆盖了从实际竞赛到完全自动化流程的各个阶段。研究成果不仅支持了LLMs在网络安全教育中的应用,同时也为系统性评估LLMs在网络安全攻击能力方面的潜力提供了新的研究路径。

【论文速读】| 对大语言模型解决攻击性安全挑战的实证评估,论文速读/精读,语言模型,安全,人工智能

研究背景:CTF挑战赛是网络安全领域一种广受欢迎的竞赛形式,涉及密码学、逆向工程、网络利用等多个领域。随着LLMs的出现和进步,研究人员开始探索并解决在此类挑战中的潜力。

研究贡献:

1.评估了六种不同LLMs在解决26个多样化CTF问题上的熟练程度。

2.构建了使用LLMs解决CTF问题的两种工作流程,并展示了它们的成功率。

3.对LLMs在处理CTF挑战时遇到的典型短板进行了全面分析,揭示了完全依赖LLMs而不进行人类干预的局限性。

引言

近年来,大语言模型(LLMs),已在自然语言处理、编程任务和对话生成等多个领域展现出卓越的性能。本研究旨在探索LLMs在网络安全领域,特别是在解决CTF(Capture The Flag)挑战方面的应用潜力。为此,研究团队在纽约大学举办的CSAW竞赛中特别引入了LLM攻击挑战。在此过程中,团队收集了参与者利用LLMs提供的“提示”来解决一系列CTF挑战的相关数据,并在此基础上进行了详尽的分析。通过这项研究,研究者期望能够更深入地理解LLMs在网络安全实战中的应用价值和效果。

背景知识

CTF挑战赛是一种模拟真实世界中的安全漏洞和攻击场景的竞赛。在这类竞赛中,参与者需运用其网络安全知识和技能来识别漏洞、编写利用代码,并最终实现“夺旗”目标。随着大语言模型(LLMs)技术的兴起,研究团队着手研究这些模型是否具备理解和解决这些高度专业化挑战的能力。通过这一探索,旨在评估LLMs在网络安全领域的实际应用潜力。

论文方法

理论背景:在探究不同大语言模型(LLMs)在解决CTF挑战方面的潜力时,研究者选用了包括GPT-3.5、GPT-4、Claude、Bard、DeepSeek Coder和Mixtral在内的六种模型。特别地,在涉及人类参与者的研究中,ChatGPT因其卓越的性能而成为最受青睐的选择。研究成果主要体现在三个方面:首先,通过定量和定性分析,评估了这些模型解决26个不同CTF问题的能力,发现ChatGPT的表现与一般人类CTF团队持平;其次,开发并测试了两种基于LLMs的CTF问题解决流程,并报告了它们的成功比率;最后,深入分析了LLMs在应对CTF挑战时的常见局限,强调了在没有人类干预的情况下,单纯依赖LLMs的潜在风险。

方法实现:通过详细地设计实验流程,研究团队对LLMs进行了全面的测试。在HITL流程中,参与者需要根据LLM生成的输出,提供反馈和指导,以帮助模型更准确地解决问题。而在完全自动化的流程中,LLM需要独立完成从理解挑战到生成解决方案的整个过程。

实验

实验设置:选择了GPT-3.5、GPT-4、Claude等六种LLMs进行实验,覆盖了多种CTF问题类型,包括密码学、逆向工程、Web利用等。

【论文速读】| 对大语言模型解决攻击性安全挑战的实证评估,论文速读/精读,语言模型,安全,人工智能

实验结果:在解决CTF挑战的过程中,ChatGPT展现出了卓越的性能,能够有效应对多种类型的挑战。相较于人类参与者的平均水平,LLMs在某些情况下能够带来更高的成功率。尽管如此,研究也揭示了LLMs在理解某些特定挑战方面的限制。

【论文速读】| 对大语言模型解决攻击性安全挑战的实证评估,论文速读/精读,语言模型,安全,人工智能

论文结论

研究结果表明,LLMs尤其是ChatGPT,能够在无需人类干预的情况下,自动解决CTF挑战,其解题能力与一般水平的人类CTF团队相当。通过对比不同LLMs在解决多种CTF挑战的表现,本研究突显了LLMs在网络安全应用中的潜力,并同时指出了过分依赖LLMs可能带来的局限。

此外,本研究通过深入分析LLMs在处理CTF挑战时的常见不足,例如在复杂逻辑处理和代码生成准确性方面的短板,为未来LLMs在网络安全教育和攻击性能力评估中的应用提供了重要参考。尽管LLMs已证明其在解决CTF挑战方面的潜力,但要实现完全自动化且无需人类干预的水平,仍需对LLMs的训练方法和应用策略进行进一步的优化。

原作者:论文解读智能体

润色:Fancy

校对:小椰风

【论文速读】| 对大语言模型解决攻击性安全挑战的实证评估,论文速读/精读,语言模型,安全,人工智能文章来源地址https://www.toymoban.com/news/detail-846455.html

到了这里,关于【论文速读】| 对大语言模型解决攻击性安全挑战的实证评估的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • AI论文速读 |(Mamba×时空图预测!) STG-Mamba:通过选择性状态空间模型进行时空图学习

    (来了来了,虽迟但到,序列建模的新宠儿mamba终于杀入了时空预测!) 论文标题 :STG-Mamba: Spatial-Temporal Graph Learning via Selective State Space Model 作者 :Lincan Li, Hanchen Wang(王翰宸), Wenjie Zhang(张文杰), Adelle Coster 机构 :新南威尔士大学(UNSW) 论文链接 :https://arxiv.org/abs/

    2024年04月26日
    浏览(41)
  • 视频实例分割论文速读

    DVIS: Decoupled Video Instance Segmentation Framework 首先,题目说的是解耦视频实例分割框架,然后说了现在离线方法和在线方法都有什么不足之处。 离线方法受到紧密耦合建模范式的限制,其范式对所有帧一视同仁,忽略了相邻帧之间的相互依赖关系,导致在长期时间对齐期间引入过

    2024年02月20日
    浏览(38)
  • (小伞每日论文速读)2023视觉领域的SOTA!InternImage究竟何方神圣?

    本篇文章的相关图片来源于论文:InternImage: Exploring Large-Scale Vision Foundation Models with Deformable Convolutions 论文链接如下:https://arxiv.org/pdf/2211.05778.pdf 碍于本人的知识水平所限,本篇文章的总结可能存在不妥之处 如作为参考,请谨慎推理内容的真实性 欢迎各路大佬指出问题! 领

    2024年02月06日
    浏览(43)
  • AI论文速读 | TimeXer:让 Transformer能够利用外部变量进行时间序列预测

    题目 : TimeXer: Empowering Transformers for Time Series Forecasting with Exogenous Variables 作者 :Yuxuan Wang ; Haixu Wu(吴海旭) ; Jiaxiang Dong ; Yong Liu ; Yunzhong Qiu ; Haoran Zhang ; Jianmin Wang(王建民) ; Mingsheng Long(龙明盛) 机构 :清华大学 网址 :https://arxiv.org/abs/2402.19072 Cool Paper :https://papers.c

    2024年04月17日
    浏览(61)
  • 运筹说 第94期|论文速读之基于关键路径的置换流水车间调度问题

    前几期的推送已经讲解了网络计划的基本知识、数学模型和相关算法,相信大家对网络计划已经有了充分的了解,这期小编将带大家一起来读一篇基于关键路径的置换流水车间调度问题的文章。 1. 文章信息 题目: An efficient critical path based method for permutation flow shop scheduling p

    2023年04月19日
    浏览(41)
  • 谷歌训了28个15亿参数模型,说明数据对大模型训练的影响

    夕小瑶科技说 原创 作者 | Python 随着ChatGPT的爆火,大规模语言模型(Large Language Model,LLM)如日中天。然而,由于相关数据细节并不公开,相关研究大多都是盲人摸象式探索,缺乏系统的经验指导。 本文针对LLM的语言模型预训练步骤给出了系统的经验性探索,训练了28个1.5

    2024年02月07日
    浏览(41)
  • Spectral Adversarial MixUp for Few-Shot Unsupervised Domain Adaptation论文速读

    域偏移是临床应用中的常见问题,其中训练图像(源域)和测试图像(目标域)处于不同的分布下。已经提出了无监督域适应 (UDA) 技术,以使在源域中训练的模型适应目标域。但是,这些方法需要来自目标域的大量图像进行模型训练。 本文提出了一种新的少样本无监督域

    2024年04月28日
    浏览(40)
  • 3D Web轻量引擎HOOPS Communicator如何实现对大模型的渲染支持?

    除了读取轻松外,HOOPS Communicator对超大模型的支持效果也非常好,它可以支持30GB的包含70万个零件和3.5亿个三角面的Catia装配模型! 那么它是如何来实现对大模型的支持呢? 我们将从以下几个方面与大家分享:最低帧率控制、增量更新、截流等级、边界预览、内存限制以及破

    2024年02月04日
    浏览(49)
  • 普通人应该如何应对大模型时代的人工智能变革带来的挑战和机遇?

    目录 普通人应该如何应对大模型时代的人工智能变革带来的挑战和机遇?

    2024年02月06日
    浏览(46)
  • 论文浅尝 | 大语言模型综述

    笔记整理:刘康为、方润楠,浙江大学硕士,研究方向为自然语言处理 链接:https://arxiv.org/abs/2303.18223 一、介绍 在当前机遇和挑战的背景下,对大语言模型的研究和开发需要更多的关注。为了让读者对大语言模型有一个基本的了解,本调查从四个主要方面对大语言模型进行

    2024年02月12日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包