【单源最短路 图论】882. 细分图中的可到达节点

这篇具有很好参考价值的文章主要介绍了【单源最短路 图论】882. 细分图中的可到达节点。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

作者推荐

视频算法专题

本文涉及知识点

单源最短路 图论

LeetCode 882. 细分图中的可到达节点

给你一个无向图(原始图),图中有 n 个节点,编号从 0 到 n - 1 。你决定将图中的每条边 细分 为一条节点链,每条边之间的新节点数各不相同。
图用由边组成的二维数组 edges 表示,其中 edges[i] = [ui, vi, cnti] 表示原始图中节点 ui 和 vi 之间存在一条边,cnti 是将边 细分 后的新节点总数。注意,cnti == 0 表示边不可细分。
要 细分 边 [ui, vi] ,需要将其替换为 (cnti + 1) 条新边,和 cnti 个新节点。新节点为 x1, x2, …, xcnti ,新边为 [ui, x1], [x1, x2], [x2, x3], …, [xcnti-1, xcnti], [xcnti, vi] 。
现在得到一个 新的细分图 ,请你计算从节点 0 出发,可以到达多少个节点?如果节点间距离是 maxMoves 或更少,则视为 可以到达 。
给你原始图和 maxMoves ,返回 新的细分图中从节点 0 出发 可到达的节点数 。

示例 1:
【单源最短路 图论】882. 细分图中的可到达节点,# 算法题,图论,c++,力扣,算法,单源最短路,细分图,节点

输入:edges = [[0,1,10],[0,2,1],[1,2,2]], maxMoves = 6, n = 3
输出:13
解释:边的细分情况如上图所示。
可以到达的节点已经用黄色标注出来。
示例 2:

输入:edges = [[0,1,4],[1,2,6],[0,2,8],[1,3,1]], maxMoves = 10, n = 4
输出:23
示例 3:

输入:edges = [[1,2,4],[1,4,5],[1,3,1],[2,3,4],[3,4,5]], maxMoves = 17, n = 5
输出:1
解释:节点 0 与图的其余部分没有连通,所以只有节点 0 可以到达。

提示:

0 <= edges.length <= min(n * (n - 1) / 2, 104)
edges[i].length == 3
0 <= ui < vi < n
图中 不存在平行边
0 <= cnti <= 104
0 <= maxMoves <= 109
1 <= n <= 3000

单源最短路

朴素单源最短路的时间复杂度是:O(nn),本文是就是:O(9e6),很可能超时。
堆优化单源最短路的时间复杂度:O(边数),边数不超过104
节点分两种:原始节点、细分节点。
原始节点到0的距离 <= maxMoves,则能到达。
细分点:枚举各边的两个端点,如果端点能到达,且距离为dis,则通过此端点能够到达 maxMoves - dis 个细分点。
同一条边的两个端点到达的细分点需要去重。

代码

核心代码

//堆(优先队列)优化迪杰斯特拉算法 狄克斯特拉(Dijkstra)算法详解
typedef pair<long long, int> PAIRLLI;
class  CHeapDis
{
public:
	CHeapDis(int n,long long llEmpty = LLONG_MAX/10):m_llEmpty(llEmpty)
	{
		m_vDis.assign(n, m_llEmpty);
	}
	void Cal(int start, const vector<vector<pair<int, int>>>& vNeiB)
	{
		std::priority_queue<PAIRLLI, vector<PAIRLLI>, greater<PAIRLLI>> minHeap;
		minHeap.emplace(0, start);
		while (minHeap.size())
		{
			const long long llDist = minHeap.top().first;
			const int iCur = minHeap.top().second;
			minHeap.pop();
			if (m_llEmpty != m_vDis[iCur])
			{
				continue;
			}
			m_vDis[iCur] = llDist;
			for (const auto& it : vNeiB[iCur])
			{
				minHeap.emplace(llDist + it.second, it.first);
			}
		}
	}
	vector<long long> m_vDis;
	const long long m_llEmpty;
};

class Solution {
public:
	int reachableNodes(vector<vector<int>>& edges, int maxMoves, int n) {
		vector<vector<pair<int, int>>> vNeiBo(n);
		for (const auto& v : edges) {
			vNeiBo[v[0]].emplace_back(std::make_pair( v[1],v[2]+1 ));
			vNeiBo[v[1]].emplace_back(std::make_pair(v[0], v[2] + 1));
		}
		CHeapDis dis(n);
		dis.Cal(0, vNeiBo);
		int iRet = 0;
		for (int i = 0; i < n; i++) {
			iRet += (dis.m_vDis[i] <= maxMoves);
		}
		for (const auto& v : edges) {
			int i0 = (int)max(0LL, maxMoves - dis.m_vDis[v[0]]);
			int i1 = (int)max(0LL, maxMoves - dis.m_vDis[v[1]]);
			iRet += min(v[2], i0 + i1);
		}
		return iRet;
	}
};

测试用例

template<class T>
void Assert(const T& t1, const T& t2)
{
	assert(t1 == t2);
}

template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{
	if (v1.size() != v2.size())
	{
		assert(false);
		return;
	}
	for (int i = 0; i < v1.size(); i++)
	{
		Assert(v1[i], v2[i]);
	}

}

int main()
{
	vector<vector<int>> edges;
	int maxMoves, n;
	{
		edges = { {1,2,4},{1,4,5},{1,3,1},{2,3,4},{3,4,5} }, maxMoves = 17, n = 5;
		auto res = Solution().reachableNodes(edges, maxMoves, n);
		Assert(1, res);
	}
	{
		edges = { {0,1,10},{0,2,1},{1,2,2} }, maxMoves = 6, n = 3;
		auto res = Solution().reachableNodes(edges, maxMoves, n);
		Assert(13, res);
	}
	{
		edges = { {0,1,4},{1,2,6},{0,2,8},{1,3,1} }, maxMoves = 10, n = 4;
		auto res = Solution().reachableNodes(edges, maxMoves, n);
		Assert(23, res);
	}
	
	

	//CConsole::Out(res);
}

【单源最短路 图论】882. 细分图中的可到达节点,# 算法题,图论,c++,力扣,算法,单源最短路,细分图,节点

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关

下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

【单源最短路 图论】882. 细分图中的可到达节点,# 算法题,图论,c++,力扣,算法,单源最短路,细分图,节点文章来源地址https://www.toymoban.com/news/detail-846501.html

到了这里,关于【单源最短路 图论】882. 细分图中的可到达节点的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 算法提高-图论-单源最短路的扩展应用

    多源点单终点最短路建图: 创建虚拟源点(创建虚拟源点的时候以是spfa为例 可以在建图的时候建出来,也可以在spfa这直接入队,也是虚拟源点的意思) 反向建图变成单源点多终点,然后遍历终点的dist即可找出最短路 这题挺简单的就不详细说了,主要是第一次遇到计数问题

    2024年02月16日
    浏览(36)
  • 算法提高-图论-单源最短路的建图方式

    建图 找出一个牧场,它到其他牧场的距离之和最小 我是这么理解的,djsktra是一个贪心的思想,加法里面不能加负数我就不说了 求乘法最大值的时候为什么边权必须0-1,因为在乘法最大值里面有一个边权大于1的话那不就等价于求加法最小值的时候有一个边权为负数的么,d

    2024年02月08日
    浏览(32)
  • 图论算法基础:单源最短路径Dijkstra算法分析

    在 有向带权图 中给定一个起始顶点(源点),Dijkstra算法可以求出 所有其他顶点 到源点的最短路径,Dijkstra算法 不能用于同时含有正负权值的边的图 Source 顶点集合:已经确定 到源点的最短路径 的顶点就会加入 Source 集合中, Source 集合初始时只有源点 dist 数组:用于记录每个顶点到

    2024年02月11日
    浏览(30)
  • 第三章 图论 No.1单源最短路及其综合应用

    做乘法的最短路时,若权值=0,只能用spfa来做,相等于加法中的负权边 1129. 热浪 1129. 热浪 - AcWing题库 单源最短路,稀疏图,用堆优化Dijkstra即可,就是板子套了个背景 debug:由于是无向图,边的数量要开两倍。但是 w[N] 没改,debug了很久 所以 e[M], ne[M], w[M] ,只有 h[N] ,其他

    2024年02月14日
    浏览(33)
  • 【算法入门&图论】【模板】拓扑排序|【模板】单源最短路2 |最小生成树

    ✅作者简介:热爱后端语言的大学生,CSDN内容合伙人 ✨精品专栏:C++面向对象 🔥系列专栏:算法百炼成神 本专栏收录的均为牛客网的算法题目,内含链表、双指针、递归、动态规划、基本数据结构等算法思想的具体运用。牛客网不仅有大量的经典算法题目,也有大厂的面

    2024年02月03日
    浏览(34)
  • 第三章 图论 No.2单源最短路之虚拟源点,状压最短路与最短路次短路条数

    dp是特殊的最短路,是无环图(拓扑图)上的最短路问题 1137. 选择最佳线路 1137. 选择最佳线路 - AcWing题库 对于每组测试数据,该重置的数据要重置,我没有重置idx,导致TLE 处理反向建图,还有一种扩展做法:虚拟源点 设置虚拟源点,与每个起点之间连接边权为0的边 原问题

    2024年02月14日
    浏览(36)
  • 【算法】单源最短路径算法——Dijkstra算法

    迪杰斯特拉算法(Dijkstra)是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法。这是从一个顶点到其余各顶点的最短路径算法,解决的是有权图中最短路径问题。迪杰斯特拉算法主要特点是从起始点开始,采用 贪心算法 的策略, 每次遍历到始点距离最

    2024年02月05日
    浏览(36)
  • C++算法:单源最短路径Dijkstra

    如果你有一份北京地图,想从中关村走到三元桥,那么怎样能找出实现这一目的的最短路径呢?一种可能的方法就是将这两点之间所有的路线都找出来,然后求出每条路线的距离,找出最短的路线。但是仔细想想我们就会发现这种办法几乎是不可行的,因为这样的路线太多了,

    2024年02月09日
    浏览(36)
  • 数据结构学习记录——图-最短路径问题(无权图单源最短路径算法、有权图单源最短路径算法、多源最短路径算法、Dijkstra(迪杰斯特拉)算法、Floyd算法)

    目录 问题分类  无权图单源最短路径算法 思路 伪代码 时间复杂度 代码实现(C语言) 有权图单源最短路径算法 Dijkstra(迪杰斯特拉)算法 伪代码  时间复杂度  代码实现(C语言) 多源最短路径算法 两种方法 Floyd算法 代码实现(C语言) 最短路径问题的抽象 在网络中,求

    2024年02月08日
    浏览(49)
  • 最短路问题 Bellman-Ford(单源最短路径)(图解)

    对于边(u,v),用dist(u)和(u,v)的和尝试更新dist(v):                          dist(v) = min(dist(v) , dist(u)+l(u,v) 注:dist(i)为源点(起点)到i点的距离,l(u,v)为u-v的边权。 Bellman-Ford的基本操作是进行多次迭代,每一轮迭代对图上所有边进行松弛操作,直到

    2024年02月09日
    浏览(28)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包