文生图大模型三部曲:DDPM、LDM、SD 详细讲解!

这篇具有很好参考价值的文章主要介绍了文生图大模型三部曲:DDPM、LDM、SD 详细讲解!。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1、引言

跨模态大模型是指能够在不同感官模态(如视觉、语言、音频等)之间进行信息转换的大规模语言模型。当前图文跨模态大模型主要有:

  • 文生图大模型:如 Stable Diffusion系列、DALL-E系列、Imagen等

  • 图文匹配大模型:如CLIP、Chinese CLIP、BridgeTower等

今天主要讨论Stable Diffusion,首先让我们看一下,Stable Diffusion能做什么呢?

  • 最简单的形式:给它一个文本提示(Text Prompt) ,它将返回与文本匹配的图像。

  • 除此之外,Stable Diffusion还可以用于图像超分、图像修复、样本生成等领域。

文生图大模型三部曲:DDPM、LDM、SD 详细讲解!,大模型研读,人工智能,扩散模型,transformer,大模型,文生图,多模态

Stable Diffusion的发展历程,主要经过如下三个阶段:

  • DDPM:无条件图片生成(不支持文本提示)

  • LDM:有条件图片生成(支持文本等其他形式提示)

  • Stable Diffusion:基于LDM发展而成的强大的文生图大模型

接下来,本文将按照Stable Diffusion的发展历程展开讲解!

2、DDPM

2.1 概要

Denoising Diffusion Probabilistic Models(去噪概率扩散模型,DDPM)在图像生成领域具有里程碑的意义,当前一些主流的文本转图像模型如DALL·E 2、stable-diffusion 和 Imagen 均采用了扩散模型Diffusion Model)作为图像生成模型,这也引发了对扩散模型的研究热潮。相比传统的GAN来说,扩散模型训练更稳定,而且能够生成更多样的样本。

2.2 基本原理

任务:从随机“向量”到真实图像的生成。和GAN不同的是,DDPM的输入和输出形状是一样的。

动机:DDPM的核心动机,如果我们一点一点地往图像中加噪声,直到把它变成高斯噪声;然后我们把所有加噪的过程逆过来,就可以把高斯分布映射成真实图像的分布。

做法:基于以上动机,作者就设置了如图的加噪声过程(diffusion)和去噪过程(denoising),作者假设加噪过程是个马尔可夫过程,即当前状态只跟上一个状态相关

文生图大模型三部曲:DDPM、LDM、SD 详细讲解!,大模型研读,人工智能,扩散模型,transformer,大模型,文生图,多模态

扩散模型包括两个过程:

  • 前向过程(扩散,加噪):对原图x0逐渐增加高斯噪音直至数据变成随机噪音的过程。

  • 反向过程(去噪):是一个去噪的过程,如果知道反向过程的每一步噪声的真实分布,那么从一个随机噪音N(0, 1)开始,逐渐去噪就能生成一个真实的样本。

简单来讲,图像生成的过程,就是一个去噪的过程;因此扩散模型的关键在于学习图像在前向过程中加入的噪声。

文生图大模型三部曲:DDPM、LDM、SD 详细讲解!,大模型研读,人工智能,扩散模型,transformer,大模型,文生图,多模态

前向过程中,从原图x0到x1,x1到x2,最后到的过程,可以用如下公式表示:

文生图大模型三部曲:DDPM、LDM、SD 详细讲解!,大模型研读,人工智能,扩散模型,transformer,大模型,文生图,多模态

式中,xt-1表示第t-1步的噪声图,xt表示第t步的噪声图。理论上,已知x0和 t,可以通过一步步推导获得xt,但是实际上,这种方式比较耗费计算资源。因此作者通过一种方式(重参数化技巧),能实现x0到xt的直接计算,这样就能节省大量资源,如下如所示:如果能从x0直接到x4,就不需要从x1到x2到x3再到x4。

文生图大模型三部曲:DDPM、LDM、SD 详细讲解!,大模型研读,人工智能,扩散模型,transformer,大模型,文生图,多模态

2.3 重参数化

扩散过程的一个重要特性是可以直接基于原始数据x0来对任意t步的xt进行采样。在扩散阶段,根据重参数化,可以推导出x0到xt的直接公式:

文生图大模型三部曲:DDPM、LDM、SD 详细讲解!,大模型研读,人工智能,扩散模型,transformer,大模型,文生图,多模态

文生图大模型三部曲:DDPM、LDM、SD 详细讲解!,大模型研读,人工智能,扩散模型,transformer,大模型,文生图,多模态

扩散过程的这个特性很重要。首先,我们可以看到xt其实可以看成是原始数据x0和随机噪音ϵ的线性组合,其中和为组合系数,它们的平方和等于1,我们也可以称两者分别为signal_ratenoise_rate。

更近一步地,我们可以基于而不是来定义noise schedule,比如我们直接将设定为一个接近0的值,那么就可以保证最终得到的近似为一个随机噪音。其次,后面的建模和分析过程将使用这个特性。

2.4 网络结构

扩散模型的核心就在于训练噪音预测模型,由于噪音和原始数据是同维度的,所以我们可以选择采用AutoEncoder架构来作为噪音预测模型。DDPM所采用的模型是一个基于residual block和attention block的U-Net模型。如下所示:

文生图大模型三部曲:DDPM、LDM、SD 详细讲解!,大模型研读,人工智能,扩散模型,transformer,大模型,文生图,多模态

经U-Net改进过后的整体网络结构如下:

  • U-Net属于encoder-decoder架构,其中encoder分成不同的stages,每个stage都包含下采样模块来降低特征的空间大小(H和W),然后decoder和encoder相反,是将encoder压缩的特征逐渐恢复。

  • U-Net在decoder模块中还引入了skip connection,即concat了encoder中间得到的同维度特征,这有利于网络优化。

  • DDPM所采用的U-Net每个stage包含2个residual block,而且部分stage还加入了self-attention模块增加网络的全局建模能力。

  • 扩散模型其实需要的是T个噪音预测模型,实际处理时,我们可以增加一个time embedding(类似transformer中的position embedding)来将timestep编码到网络中,从而只需要训练一个共享的U-Net模型。具体地,DDPM在各个residual block都引入了time embedding。

2.5 模型训练

虽然扩散模型背后的推导比较复杂,但是我们最终得到的优化目标非常简单,就是让网络预测的噪音和真实的噪音一致。DDPM的训练过程也非常简单,如下图所示,训练过程具体步骤为:

  • 随机选择一个训练样本

  • 从1~T随机抽样一个t

  • 随机产生高斯噪音,并计算当前所产生的带噪音数据xt

  • 输入网络预测噪音

  • 计算产生的噪音和预测的噪音的L2损失

  • 计算梯度并更新网络

文生图大模型三部曲:DDPM、LDM、SD 详细讲解!,大模型研读,人工智能,扩散模型,transformer,大模型,文生图,多模态


一旦训练完成,其采样过程也非常简单:我们从一个随机高斯噪音开始,并用训练好的的网络预测每一步的(从T到1)噪音,并根据该噪声去噪,就能逐步获得精细的生成图像。

2.6 实现效果

衡量模型生成图像质量的指标

  • Inception Score(IS):图像质量的期望值(Exp)和图像质量分布的分歧度(KL),越大越好。

  • Fréchet Inception Distance(FID):生成图像和真实图像在特征空间中的分布距离;衡量它们之间的差异,越小越好。

1、在CIFAR10数据集上,DDPM获得了9.46的Inception分数和3.17的最先进的FID分数。

文生图大模型三部曲:DDPM、LDM、SD 详细讲解!,大模型研读,人工智能,扩散模型,transformer,大模型,文生图,多模态

文生图大模型三部曲:DDPM、LDM、SD 详细讲解!,大模型研读,人工智能,扩散模型,transformer,大模型,文生图,多模态

2、在分辨率为256x256 LSUN数据集上,DDPM能生成与ProgressiveGAN同样高质量的图像。

文生图大模型三部曲:DDPM、LDM、SD 详细讲解!,大模型研读,人工智能,扩散模型,transformer,大模型,文生图,多模态

2.7 不足点

虽然DDPM能够生成高质量的图片,但是还存在一些不足:

  • 计算量大:由于DDPM整个扩散过程是在像素空间上进行的,所以计算量很高

  • 不支持条件控制:DDPM是一个单纯的图像生成模型,不支持文本等提示信息,从而限制了其的发展。

3、LDM

3.1 概要

Latent Diffusion Models(潜在扩散模型,LDM)通过在一个潜在表示空间中迭代“去噪”数据来生成图像,然后将表示结果解码为完整的图像,让文图生成能够在消费级GPU上,在10秒级别时间生成图片,大大降低了落地门槛,也带来了文图生成领域的大火。除此之外,LDM在无条件图片生成、图片修复、图片超分任务上也进行了实验,都取得了不错的效果。

文生图大模型三部曲:DDPM、LDM、SD 详细讲解!,大模型研读,人工智能,扩散模型,transformer,大模型,文生图,多模态

3.2 主要创新点

  • LDM提出了cross-attention的方法来实现多模态训练,使得条件图片生成任务也可以实现。论文中提到的条件图片生成任务包括:类别条件图片生成(class-condition), 文图生成(text-to-image), 布局条件图片生成(layout-to-image)。这也为日后Stable Diffusion的开发奠定了基础。

  • DDPM在像素空间上训练模型,需要反复迭代计算,因此训练和推理代价都很高。DLM提出一种在潜在表示空间上进行扩散过程的方法,能够显著减少计算复杂度,同时也能达到十分不错的图片生成效果。

  • 相比于其它空间压缩方法,论文提出的方法可以生成更细致的图像,并且在高分辨率图片生成任务(如风景图生成,百万像素图像)上表现得也很好。

3.3 网络结构

Latent Diffusion Models整体框架如图,首先需要训练好一个自编码模型(AutoEncoder,包括一个编码器 E 和一个解码器D。这样一来,我们就可以利用编码器对图片进行压缩,然后在潜在表示空间上做diffusion操作,最后我们再用解码器恢复到原始像素空间即可,论文将这个方法称之为感知压缩(Perceptual Compression)。

文生图大模型三部曲:DDPM、LDM、SD 详细讲解!,大模型研读,人工智能,扩散模型,transformer,大模型,文生图,多模态

3.4 图片感知压缩

定义:利用编码器对图片进行压缩,然后在潜在表示空间上做diffusion操作,最后再用解码器恢复到原始像素空间。

原理:通过VAE这类自编码模型对原图片进行处理,忽略掉图片中的高频信息,只保留重要、基础的一些特征;这种方法能够大幅降低训练和采样阶段的计算复杂度。

感知压缩主要利用一个预训练的自编码模型,该模型能够学习到一个在感知上等同于图像空间的潜在表示空间。在感知压缩的过程中,设置下采样因子的大小为: f=H/h=W/w,通过对原图进行f倍的下采样,让扩散模型在潜在空间中进行,从而减小计算量。

论文对比了 f 在分别 {1, 2, 4, 8, 16, 32}下的效果,发现 f 在 {4−16}之间可以比较好的平衡压缩效率与视觉感知效果。作者重点推荐了LDM-4 LDM-8

文生图大模型三部曲:DDPM、LDM、SD 详细讲解!,大模型研读,人工智能,扩散模型,transformer,大模型,文生图,多模态

文生图大模型三部曲:DDPM、LDM、SD 详细讲解!,大模型研读,人工智能,扩散模型,transformer,大模型,文生图,多模态

3.5 潜在扩散模型

扩散模型可以解释为一个时序去噪自编码器ϵ_θ (x_t,t),其目标是根据输入x_t和t,取预测噪声。相应的目标函数可以写成如下形式:

文生图大模型三部曲:DDPM、LDM、SD 详细讲解!,大模型研读,人工智能,扩散模型,transformer,大模型,文生图,多模态

其中 t 从 {1,…,T} 中均匀采样获得。

而在潜在扩散模型中,引入了预训练的感知压缩模型,它包括一个编码器ε和一个解码器D。这样在训练时就可以利用编码器得到z_t,从而让模型在潜在表示空间中学习,相应的目标函数可以写成如下形式:

文生图大模型三部曲:DDPM、LDM、SD 详细讲解!,大模型研读,人工智能,扩散模型,transformer,大模型,文生图,多模态

在潜在表示空间上做diffusion操作其主要过程和标准的扩散模型没有太大的区别,所用到的扩散模型的具体实现为 time-conditional UNet。但是有一个重要的地方是论文为diffusion操作引入了Conditioning Mechanisms,通过cross-attention的方式来实现多模态训练,使得条件图片生成任务也可以实现。

3.6 交叉注意力

本文在扩散过程中引入了条件机制(Conditioning Mechanisms),通过cross-attention的方式来实现多模态训练,使得条件图片生成任务得以实现。具体做法是通过训练一个条件时序去噪自编码器ϵ_θ (z_t,t,y),来通过 y来控制图片合成的过程。

为了能够从多个不同的模态预处理 y ,论文引入了一个领域专用编码器τ_θ,它用来将 y 映射为一个中间表示τ_θ (y) ,这样我们就可以很方便的引入各种形态的条件(文本、类别等等)。最终模型就可以通过一个cross-attention层映射将控制信息融入到UNet的中间层,cross-attention层的实现如下:

文生图大模型三部曲:DDPM、LDM、SD 详细讲解!,大模型研读,人工智能,扩散模型,transformer,大模型,文生图,多模态

3.7 实现效果

无条件图像生成:

  • 论文从FID和Precision-and-Recall两方面对比LDM的样本生成能力,实验数据集为CelebA-HQ、FFHQ和LSUN-Churches/Bedrooms;其效果超过了GANs和LSGM,并且超过同为扩散模型的DDPM。

文生图大模型三部曲:DDPM、LDM、SD 详细讲解!,大模型研读,人工智能,扩散模型,transformer,大模型,文生图,多模态

有条件图像生成:

  • 采用FID和IS作为衡量图像质量指标,LDM-KL-8-G*在FID和IS两项指标上均获得不错的结果;且在FID相同的情况下,网络参数量显著下降。

文生图大模型三部曲:DDPM、LDM、SD 详细讲解!,大模型研读,人工智能,扩散模型,transformer,大模型,文生图,多模态

4、Stable Diffusion

4.1 概要

Stable diffusion是一种潜在的文本到图像的扩散模型。基于之前的大量工作(如DDPM、LDM的提出),并且在Stability AI的算力支持和LAION的海量数据支持下,Stable diffusion才得以成功。

Stable diffusion在来自LAION- 5B数据库子集的512x512图像上训练潜在扩散模型。与谷歌的Imagen类似,这个模型使用一个冻结的CLIP vitl /14文本编码器来根据文本提示调整模型。

Stable diffusion拥有860M的UNet和123M的文本编码器,该模型相对轻量级,可以运行在具有至少10GB VRAM的GPU上。

4.2 主要改进点

Stable diffusion是在LDM的基础上建立的,同时在LDM的基础上进行了一些改进:

  • 数据集:在更大的数据集LAION- 5B上进行训练

  • 条件机制:使用更强大的CLIP模型,代替原始的交叉注意力调节机制

除此之外,随着各种图形界面的出现、 微调方法的发布、控制模型的公开,SD进入全新架构SDXL时代,功能更加强大。

4.3 模型训练

SD的训练是采用了32台8卡的A100机器(32 x 8 x A100_40GB GPUs),单卡的训练batch size为2,并采用gradient accumulation,其中gradient accumulation steps=2,那么训练的总batch size就是32x8x2x2=2048。训练优化器采用AdamW,训练采用warmup,在初始10,000步后学习速率升到0.0001,后面保持不变。至于训练时间约150,000小时(A100卡时),如果按照256卡A100来算的话,那么大约需要训练25天左右。

SD提供了不同版本的模型权重可供选择:

  • SD v1.1:在laion2B-en数据集上以256x256大小训练237,000步,上面我们已经说了,laion2B-en数据集中256以上的样本量共1324M;然后在laion5B的高分辨率数据集以512x512尺寸训练194,000步,这里的高分辨率数据集是图像尺寸在1024x1024以上,共170M样本。

  • SD v1.2:以SD v1.1为初始权重,在improved_aesthetics_5plus数据集上以512x512尺寸训练515,000步数,这个improved_aesthetics_5plus数据集上laion2B-en数据集中美学评分在5分以上的子集(共约600M样本),注意这里过滤了含有水印的图片(pwatermark>0.5)以及图片尺寸在512x512以下的样本。

  • SD v1.3:以SD v1.2为初始权重,在improved_aesthetics_5plus数据集上继续以512x512尺寸训练195,000步数,不过这里采用了CFG(以10%的概率随机drop掉text)。

  • SD v1.4:以SD v1.2为初始权重,在improved_aesthetics_5plus数据集上采用CFG以512x512尺寸训练225,000步数。

  • SD v1.5:以SD v1.2为初始权重,在improved_aesthetics_5plus数据集上采用CFG以512x512尺寸训练595,000步数。

其实可以看到SD v1.3、SD v1.4和SD v1.5其实是以SD v1.2为起点在improved_aesthetics_5plus数据集上采用CFG训练过程中的不同checkpoints,目前最常用的版本是SD v1.4和SD v1.5。

4.4 条件控制

  • SD采用CLIP text encoder来对输入text提取text embeddings,具体的是采用目前OpenAI所开源的最大CLIP模型:clip-vit-large-patch14,这个CLIP的text encoder是一个transformer模型(只有encoder模块):层数为12,特征维度为768,模型参数大小是123M。对于输入text,送入CLIP text encoder后得到最后的hidden states(即最后一个transformer block得到的特征),其特征维度大小为77x768(77是token的数量),这个细粒度的text embeddings将以cross attention的方式送入UNet中。

  • 值得注意的是,这里的tokenizer最大长度为77(CLIP训练时所采用的设置),当输入text的tokens数量超过77后,将进行截断,如果不足则进行paddings,这样将保证无论输入任何长度的文本(甚至是空文本)都得到77x768大小的特征。 在训练SD的过程中,CLIP text encoder模型是冻结的。在早期的工作中,比如OpenAI的GLIDE和latent diffusion中的LDM均采用一个随机初始化的tranformer模型来提取text的特征,但是最新的工作都是采用预训练好的text model。比如谷歌的Imagen采用纯文本模型T5 encoder来提出文本特征,而SD则采用CLIP text encoder,预训练好的模型往往已经在大规模数据集上进行了训练,它们要比直接采用一个从零训练好的模型要好。

  • 下面是SD中使用的条件控制模型CLIP的结构示意图

文生图大模型三部曲:DDPM、LDM、SD 详细讲解!,大模型研读,人工智能,扩散模型,transformer,大模型,文生图,多模态

4.5 与其他模型对比

DALL-E2 :出自OpenAI,其基本原理和SD一样,都是源于最初的扩散概率模型(DDPM),与之不同发是,SD继承了LDM的思想,在潜在空间中进行扩散学习;而DALL-E2是在像素空间中进行扩散学习,所以其计算复杂度较高。

Imagen:由谷歌发布,采用预训练好的文本编码器T5,通过扩散模型,实现文本到低分辨率图像的生成,最后将低分辨率图像进行两次超分,得到高分辨率图像。

5、Conference

  • 【扩散模型之LDM】Latent Diffusion Models 论文解读_ldm的损失函数-CSDN博客
  • 【扩撒模型之DDPM】Denoising Diffusion Probabilistic Models论文解读
  • 最强文生图跨模态大模型:Stable Diffusion_文生图数据集形式-CSDN博客
  • Denoising Diffusion Probabilistic Models

  • High-Resolution Image Synthesis with Latent Diffusion Models

  • https://huggingface.co/CompVis/stable-diffusion

  •  GitHub - CompVis/latent-diffusion: High-Resolution Image Synthesis with Latent Diffusion Models

  • GitHub - hojonathanho/diffusion: Denoising Diffusion Probabilistic Models

  • DDPM - 搜索结果 - 知乎

  • Latent Diffusion Model - 搜索结果 - 知乎文章来源地址https://www.toymoban.com/news/detail-846544.html

到了这里,关于文生图大模型三部曲:DDPM、LDM、SD 详细讲解!的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【Docker学习三部曲】——进阶篇

    1️⃣ 什么是 Docker-Compose ? Docker Compose 是 Docker 官方提供的 一个用于定义和运行多个容器的工具 ,它采用了声明式的语法定义单个应用程序的多个容器以及它们之间的相互关系和依赖关系。 使用 Docker Compose ,您可以通过一个配置文件来管理多个 Docker 容器,从而更轻松地部署

    2023年04月25日
    浏览(41)
  • JavaCV人脸识别三部曲之二:训练

    这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos 本文是《JavaCV人脸识别三部曲》的第二篇,前文《视频中的人脸保存为图片》咱们借助摄像头为两位群众演员生成大量人脸照片,如下图,群众演员A的照片保存在 E:temp20211218\\001 man ,B的照片保存

    2024年02月11日
    浏览(37)
  • Java版人脸跟踪三部曲之三:编码实战

    这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos 作为《Java版人脸跟踪三部曲》系列的终篇,本文会与大家一起写出完整的人脸跟踪应用代码 前文《开发设计》中,已经对人脸跟踪的核心技术、应用主流程、异常处理等方方面面做了详细设计,建

    2024年02月12日
    浏览(38)
  • JavaCV人脸识别三部曲之三:识别和预览

    这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos 《视频中的人脸保存为图片》 《训练》 《识别和预览》 作为《JavaCV人脸识别三部曲》的终篇,今天咱们要开发一个实用的功能:有人出现在摄像头中时,应用程序在预览窗口标注出此人的身份,效

    2024年02月11日
    浏览(39)
  • vscode上的git三部曲+git pull操作

    git三部曲:git add .、git commit -m \\\'\\\'、git push,命令在连接远程仓库的本地仓库路径下的终端执行。 vscode上的可视化操作如下:  1、对仓库里的文件做更改,让仓库操作的地方有变化。 2、 点击+号,让文件进入缓存,此步骤相当于终端执行命令git add .  3、在这里输入信息并点击

    2024年02月11日
    浏览(40)
  • Java版人脸跟踪三部曲之二:开发设计

    如何开发Java版人脸跟踪应用?本篇给出了设计大纲,并解释了相关的重要知识点 这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos 本篇是《Java版人脸跟踪三部曲》系列的第二篇,前文体验了人脸跟踪的效果,想要编码实现这样的效果,咱们需要做

    2024年02月12日
    浏览(42)
  • Go语言基准测试(benchmark)三部曲之一:基础篇

    这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos Go的标准库内置的testing框架提供了基准测试(benchmark)功能,可以用来验证本地方法在串行或者并行执行时的基准表现,帮助开发者了解代码的真实性能情况,例如一个方法执行一次的平均耗时,还能

    2024年02月06日
    浏览(50)
  • 【C++系列P4】‘类与对象‘-三部曲——[类](2/3)

     前言 大家好吖,欢迎来到 YY 滴 C++系列 ,热烈欢迎! 【 \\\'类与对象\\\'-三部曲】的大纲主要内容如下 : 如标题所示,本章是【 \\\'类与对象\\\'-三部曲】三章中的第二章节—— 类章节 ,主要内容如下: 目录 一.类 1.类的组成与计算类的大小(含结构体内存对齐规则) 二. 空类的大小

    2024年02月08日
    浏览(41)
  • Go语言基准测试(benchmark)三部曲之三:提高篇

    这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos -《Go语言基准测试(benchmark)三部曲》已近尾声,经历了《基础篇》和《内存篇》的实战演练,相信您已熟练掌握了基准测试的常规操作以及各种参数的用法,现在可以学习一些进阶版的技能了,在面

    2024年02月06日
    浏览(44)
  • 数据结构:堆的三部曲(二)top K问题

    top k问题解决的是获取前几个最值的问题。 我们知道 堆的功能主要是选数,选出最大值或者最小值 。那么我们每次获取堆顶元素后,再将剩余元素调整成堆,就可以选出次大的数,如果我们只想要前k个最大值或者最小值,就只需要获取堆顶元素k次,调整k次。比如王者荣耀

    2024年02月02日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包