快速排序算法在处理不同容量数组时的数据可视化

这篇具有很好参考价值的文章主要介绍了快速排序算法在处理不同容量数组时的数据可视化。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

回忆快速排序:
链接: link

#将不同数据规模数组快排时间可视化
import time
import random
import matplotlib.pyplot as plt
import numpy as np
#三值取中法取轴值
def FindPivox(nums,left,right):
     mid=(left+right)//2
     if nums[left]>nums[mid]:
         nums[left],nums[mid]=nums[mid],nums[left]
     if nums[left]>nums[right]:
         nums[left],nums[right]=nums[right],nums[left]
     if nums[mid]>nums[right]:
         nums[mid],nums[right]=nums[right],nums[mid]
     return mid

def partition(nums,left,right,pivox):
    while left<=right:
        while nums[left]<pivox:
            left+=1
        while nums[right]>pivox and right>0:
            right-=1
        nums[left],nums[right]=nums[right],nums[left]
    nums[left], nums[right] = nums[right], nums[left]
    return left

def quick_sort(nums,left=0,right=None):
    if right is None:
        right=len(nums)-1
    #1、确定恰当的轴值
    p_index1=FindPivox(nums,left,right)
    #2、轴值和右端元素交换位置,方便双指针法分割小值序列和大值序列
    nums[p_index1],nums[right]=nums[right],nums[p_index1]
    #3、双指针法分割小值序列和大值序列
    p_index2=partition(nums,left,right-1,nums[right])
    #4、将轴值元素放在小值元素序列右边,大值元素左边,其实就是左指针元素和轴值交换
    nums[p_index2],nums[right]=nums[right],nums[p_index2]
    #5、递归:(增加条件当数据规模小于时停止递归改用直接插入排序)
    if (p_index2-left)>1:#隐含了基准情形,当序列中元素为1时排序完成
        quick_sort(nums,left,p_index2-1)
    if (right-p_index2)>1:
        quick_sort(nums,p_index2+1,right)
        return nums

#数据可视化

# 生成的规模为volume的整数数组
def generateData(volume,repetitionRate):
    # :param volume:定义生成的数据规模大小,应为整数
    # :param repetitionRate: 需要生成的数据序列的重复率,其值为[0,1]的小数,0代表完全不重复,1代表全部重复
    # :return: 按照要求生成的规模为volume的整数数组
    dataSet = volume - int(repetitionRate*volume)
    if dataSet == 0:
        return [0]*volume
    data = [0]*volume
    for i in range(dataSet):
        data[i] = i
    startIndex = dataSet
    while startIndex < volume:
        for i in range(dataSet):
            data[startIndex] = random.randrange(0,dataSet)
            startIndex += 1
            if startIndex == volume:
                 break
    random.shuffle(data) # 将数据随机打乱
    return data

#运行时间
def elapsedTime(function, volumes):
    # :param function:需要计算运行函数的函数名
    # :param volumes: 记录数据规模大小的数组
    # :return: 记录运行时间的数组
    elapsedTimes = []
    for volume in volumes:
        nums = generateData(volume, 0)
        startTime = time.time_ns()
        function(nums,0,len(nums)-1)
        endTime = time.time_ns()
        elapsedTimes.append(endTime-startTime)
    return elapsedTimes

#可视化,横轴竖轴分别代表,数据规模、运行时间
def getChart(X,Y):
    fig, ax = plt.subplots()#创建一个新的图形窗口和一个坐标轴对象
    ax.plot(X, Y)
    plt.xlabel('Volume')  #指定x轴名称
    plt.ylabel('Elapsed Time')  #指定y轴名称
    plt.yticks(np.arange(0,0.5,0.1))#设置y轴间距
    plt.title('Quick Sort Elapsed Time')  #创建图表名称
    plt.show()
    plt.pause(5)
def main():
    volumes = [10*i for i in range(1,3)]#类型:列表。
    Y = elapsedTime(quick_sort,volumes)
    getChart(volumes, Y)#x:数据规模 y:快速排序所需时间

if __name__ == "__main__":
    main()

输出结果:
快速排序算法在处理不同容量数组时的数据可视化,排序算法,信息可视化,算法,数据结构
要想得到处理大规模数组所需的时间,可以修改
volumes参数
eg

volumes = [100*i for i in range(1,101)]

这样就能得到快排在处理数据规模从100、200…10000的数组所需的时间啦文章来源地址https://www.toymoban.com/news/detail-846733.html

到了这里,关于快速排序算法在处理不同容量数组时的数据可视化的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【数据结构与算法】十大经典排序算法-快速排序

    🌟 个人博客: www.hellocode.top 🏰 Java知识导航: Java-Navigate 🔥 CSDN: HelloCode. 🌞 知乎 :HelloCode 🌴 掘金 :HelloCode ⚡如有问题,欢迎指正,一起学习~~ 快速排序(Quick Sort)是一种高效的排序算法,是对冒泡排序的优化。它采用分治法(Divide and Conquer)的思想,将待排序序列

    2024年02月13日
    浏览(65)
  • 数据结构——排序算法之快速排序

        个人主页: 日刷百题 系列专栏 : 〖C/C++小游戏〗 〖Linux〗 〖数据结构〗   〖C语言〗 🌎 欢迎各位 → 点赞 👍+ 收藏 ⭐️+ 留言 📝  ​ ​ 快速排序是Hoare于1962年提出的一种二叉树结构的交换排序方法。 基本思想: 任取待排序元素序列中 的某元素作为基准值,按照

    2024年01月21日
    浏览(59)
  • 【数据结构与算法】:选择排序与快速排序

    🔥 个人主页 : Quitecoder 🔥 专栏 :数据结构与算法 我的博客即将同步至腾讯云开发者社区,邀请大家一同入驻:腾讯云 欢迎来到排序的第二个部分:选择排序与快速排序! 选择排序是一种简单直观的比较排序算法。该算法的基本思想是在每一轮中选出当前未排序部分的最

    2024年03月17日
    浏览(52)
  • 【数据结构】排序算法(二)—>冒泡排序、快速排序、归并排序、计数排序

    👀 樊梓慕: 个人主页  🎥 个人专栏: 《C语言》《数据结构》《蓝桥杯试题》《LeetCode刷题笔记》《实训项目》 🌝 每一个不曾起舞的日子,都是对生命的辜负 目录 前言 1.冒泡排序 2.快速排序 2.1Hoare版 2.2占坑版 2.3前后指针版 2.4三数取中对快速排序的优化 2.5非递归版 3.归

    2024年02月08日
    浏览(54)
  • 数据结构与算法:快速排序

    荷兰国旗问题 想要理解快速排序,就先理解这个问题: [LeetCode75.颜色分类] 荷兰国旗是由红白蓝三色组成的: 现在将其颜色打乱 然后根据一定的算法,将其复原为红白蓝三色,这就叫做荷兰国旗问题。 在LeetCode的题目中,其将荷兰国旗的三个颜色用0,1,2来表达,也就是说

    2024年01月15日
    浏览(42)
  • 【数据结构与算法】:非递归实现快速排序、归并排序

    🔥 个人主页 : Quitecoder 🔥 专栏 :数据结构与算法 上篇文章我们详细讲解了递归版本的快速排序,本篇我们来探究非递归实现快速排序和归并排序 快速排序的非递归实现主要依赖于栈(stack)来模拟递归过程中的函数调用栈。递归版本的快速排序通过递归调用自身来处理子

    2024年03月24日
    浏览(55)
  • 数据结构与算法之快速排序

    快速排序 (Quick Sort),又称划分交换排序(partition-exchange sort),通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数

    2024年02月10日
    浏览(43)
  • 【数据结构与算法】如何对快速排序进行细节优化以及实现非递归版本的快速排序?

    君兮_的个人主页 即使走的再远,也勿忘启程时的初心 C/C++ 游戏开发 Hello,米娜桑们,这里是君兮_,国庆长假结束了,无论是工作还是学习都该回到正轨上来了,从今天开始恢复正常的更新频率,今天为大家带来的内容是快速排序的两大优化和非递归实现 好了废话不多说,开

    2024年02月08日
    浏览(45)
  • 【数据结构】详解七大排序算法(直接插入排序、希尔排序、直接选择排序、堆排序、冒泡排序、快速排序)

    1、基本思想    把待排序的数按其关键码值的大小逐个插入到一个已经排好序的有序序列中,直到所以的记录插入完为止,得到一个新的有序序列。    实际中我们玩扑克牌时,就用到了插入排序的思想 基本步骤:    当插入第i个元素时,前面的arr[0]、arr[2]…arr

    2024年02月04日
    浏览(76)
  • 【数据结构与算法】快速排序的非递归实现方法

      目录 一.前言 二.非递归实现 如果数据量过大的话,不断递归就会出现 栈溢出 的现象,这个时候你的代码是没问题的,但就是跑不起来,这个时候就要 把递归改成非递归 。 一般有两种改法: 1.直接改,利用循环等; 2.借助栈的辅助。 而快速排序的非递归实现方法就需要

    2023年04月17日
    浏览(54)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包