LC狂刷66道Dynamic-Programming算法题。跟动态规划说拜拜

这篇具有很好参考价值的文章主要介绍了LC狂刷66道Dynamic-Programming算法题。跟动态规划说拜拜。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一种是从 (i-1, j) 这个位置走一步到达

一种是从(i, j - 1) 这个位置走一步到达

因为是计算所有可能的步骤,所以是把所有可能走的路径都加起来,所以关系式是 dp[i] [j] = dp[i-1] [j] + dp[i] [j-1]。

步骤三、找出初始值

显然,当 dp[i] [j] 中,如果 i 或者 j 有一个为 0,那么还能使用关系式吗?答是不能的,因为这个时候把 i - 1 或者 j - 1,就变成负数了,数组就会出问题了,所以我们的初始值是计算出所有的 dp[0] [0….n-1] 和所有的 dp[0….m-1] [0]。这个还是非常容易计算的,相当于计算机图中的最上面一行和左边一列。因此初始值如下:

dp[0] [0….n-1] = 1; // 相当于最上面一行,机器人只能一直往左走

dp[0…m-1] [0] = 1; // 相当于最左面一列,机器人只能一直往下走

撸代码

三个步骤都写出来了,直接看代码

public static int uniquePaths(int m, int n) {
if (m <= 0 || n <= 0) {
return 0;
}

int[][] dp = new int[m][n]; //
// 初始化
for(int i = 0; i < m; i++){
dp[i][0] = 1;
}
for(int i = 0; i < n; i++){
dp[0][i] = 1;
}
// 推导出 dp[m-1][n-1]
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}
return dp[m-1][n-1];
}

案例三、二维数组 DP

写到这里,有点累了,,但还是得写下去,所以看的小伙伴,你们可得继续看呀。下面这道题也不难,比上面的难一丢丢,不过也是非常类似

问题描述

给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

说明:每次只能向下或者向右移动一步。

举例:
输入:
arr = [
[1,3,1],
[1,5,1],
[4,2,1]
]
输出: 7
解释: 因为路径 1→3→1→1→1 的总和最小。

和上面的差不多,不过是算最优路径和,

步骤一、定义数组元素的含义

由于我们的目的是从左上角到右下角,最小路径和是多少,那我们就定义 dp[i] [j]的含义为:当机器人从左上角走到(i, j) 这个位置时,最下的路径和是 dp[i] [j]。那么,dp[m-1] [n-1] 就是我们要的答案了。

注意,这个网格相当于一个二维数组,数组是从下标为 0 开始算起的,所以 由下角的位置是 (m-1, n - 1),所以 dp[m-1] [n-1] 就是我们要走的答案。

步骤二:找出关系数组元素间的关系式

想象以下,机器人要怎么样才能到达 (i, j) 这个位置?由于机器人可以向下走或者向右走,所以有两种方式到达

一种是从 (i-1, j) 这个位置走一步到达

一种是从(i, j - 1) 这个位置走一步到达

不过这次不是计算所有可能路径,而是计算哪一个路径和是最小的,那么我们要从这两种方式中,选择一种,使得dp[i] [j] 的值是最小的,显然有
dp[i] [j] = min(dp[i-1][j],dp[i][j-1]) + arr[i][j];// arr[i][j] 表示网格种的值
步骤三、找出初始值

显然,当 dp[i] [j] 中,如果 i 或者 j 有一个为 0,那么还能使用关系式吗?答是不能的,因为这个时候把 i - 1 或者 j - 1,就变成负数了,数组就会出问题了,所以我们的初始值是计算出所有的 dp[0] [0….n-1] 和所有的 dp[0….m-1] [0]。这个还是非常容易计算的,相当于计算机图中的最上面一行和左边一列。因此初始值如下:

dp[0] [j] = arr[0] [j] + dp[0] [j-1]; // 相当于最上面一行,机器人只能一直往左走

dp[i] [0] = arr[i] [0] + dp[i] [0]; // 相当于最左面一列,机器人只能一直往下走
代码如下

public static int uniquePaths(int[][] arr) {
int m = arr.length;
int n = arr[0].length;
if (m <= 0 || n <= 0) {
return 0;
}

int[][] dp = new int[m][n]; //
// 初始化
dp[0][0] = arr[0][0];
// 初始化最左边的列
for(int i = 1; i < m; i++){
dp[i][0] = dp[i-1][0] + arr[i][0];
}
// 初始化最上边的行
for(int i = 1; i < n; i++){
dp[0][i] = dp[0][i-1] + arr[0][i];
}
// 推导出 dp[m-1][n-1]
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
dp[i][j] = Math.min(dp[i-1][j], dp[i][j-1]) + arr[i][j];
}
}
return dp[m-1][n-1];
}

案例 4:编辑距离

这次给的这道题比上面的难一些,在 leetcdoe 的定位是 hard 级别。

问题描述

给定两个单词 word1 和 word2,计算出将 word1 转换成 word2 所使用的最少操作数 。

你可以对一个单词进行如下三种操作:

插入一个字符
删除一个字符
替换一个字符

示例 1:
输入: word1 = “horse”, word2 = “ros”
输出: 3
解释:
horse -> rorse (将 ‘h’ 替换为 ‘r’)
rorse -> rose (删除 ‘r’)
rose -> ros (删除 ‘e’)

解答

还是老样子,按照上面三个步骤来,并且我这里可以告诉你,90% 的字符串问题都可以用动态规划解决,并且90%是采用二维数组。

步骤一、定义数组元素的含义

由于我们的目的求将 word1 转换成 word2 所使用的最少操作数 。那我们就定义 dp[i] [j]的含义为:当字符串 word1 的长度为 i,字符串 word2 的长度为 j 时,将 word1 转化为 word2 所使用的最少操作次数为 dp[i] [j]。

有时候,数组的含义并不容易找,所以还是那句话,我给你们一个套路,剩下的还得看你们去领悟。

步骤二:找出关系数组元素间的关系式

接下来我们就要找 dp[i] [j] 元素之间的关系了,比起其他题,这道题相对比较难找一点,但是,不管多难找,大部分情况下,dp[i] [j] 和 dp[i-1] [j]、dp[i] [j-1]、dp[i-1] [j-1] 肯定存在某种关系。因为我们的目标就是,从规模小的,通过一些操作,推导出规模大的。对于这道题,我们可以对 word1 进行三种操作

插入一个字符
删除一个字符
替换一个字符

由于我们是要让操作的次数最小,所以我们要寻找最佳操作。那么有如下关系式:

a、如果我们 word1[i] 与 word2 [j] 相等,这个时候不需要进行任何操作,显然有 dp[i] [j] = dp[i-1] [j-1]。(别忘了 dp[i] [j] 的含义哈)。

b、如果我们 word1[i] 与 word2 [j] 不相等,这个时候我们就必须进行调整,而调整的操作有 3 种,我们要选择一种。三种操作对应的关系试如下(注意字符串与字符的区别):
(1)、如果把字符 word1[i] 替换成与 word2[j] 相等,则有 dp[i] [j] = dp[i-1] [j-1] + 1;

(2)、如果在字符串 word1末尾插入一个与 word2[j] 相等的字符,则有 dp[i] [j] = dp[i] [j-1] + 1;

(3)、如果把字符 word1[i] 删除,则有 dp[i] [j] = dp[i-1] [j] + 1;

那么我们应该选择一种操作,使得 dp[i] [j] 的值最小,显然有

dp[i] [j] = min(dp[i-1] [j-1],dp[i] [j-1],dp[[i-1] [j]]) + 1;

于是,我们的关系式就推出来了,

步骤三、找出初始值

显然,当 dp[i] [j] 中,如果 i 或者 j 有一个为 0,那么还能使用关系式吗?答是不能的,因为这个时候把 i - 1 或者 j - 1,就变成负数了,数组就会出问题了,所以我们的初始值是计算出所有的 dp[0] [0….n] 和所有的 dp[0….m] [0]。这个还是非常容易计算的,因为当有一个字符串的长度为 0 时,转化为另外一个字符串,那就只能一直进行插入或者删除操作了。

代码如下(可以左右滑动)

public int minDistance(String word1, String word2) {
int n1 = word1.length();
int n2 = word2.length();
int[][] dp = new int[n1 + 1][n2 + 1];
// dp[0][0…n2]的初始值
for (int j = 1; j <= n2; j++)
dp[0][j] = dp[0][j - 1] + 1;
// dp[0…n1][0] 的初始值
for (int i = 1; i <= n1; i++) dp[i][0] = dp[i - 1][0] + 1;
// 通过公式推出 dp[n1][n2]
for (int i = 1; i <= n1; i++) {
for (int j = 1; j <= n2; j++) {
// 如果 word1[i] 与 word2[j] 相等。第 i 个字符对应下标是 i-1
if (word1.charAt(i - 1) == word2.charAt(j - 1)){
p[i][j] = dp[i - 1][j - 1];
}else {
dp[i][j] = Math.min(Math.min(dp[i - 1][j - 1], dp[i][j - 1]), dp[i - 1][j]) + 1;
}
}
}
return dp[n1][n2];
}

最后说下,如果你要练习,可以去 leetcode,选择动态规划专题,然后连续刷几十道,保证你以后再也不怕动态规划了。当然,遇到很难的,咱还是得挂。

三、总结

上面的这些题,基本都是不怎么难的入门题,除了最后一道相对难一点,本来是要在写几道难一点,并且讲如何优化的,不过看了下字数,文章有点长了,关于如何优化的,后面再讲吧,在之后的文章中,我也会按照这个步骤,在给大家讲四五道动态规划 hard 级别的题,会放在每天推文的第二条给大家学习。如果大家感兴趣,文章看的人多,那么优化篇很快就会撸出来,不过感兴趣的人很少的话,动力比较少,可能就会慢一些,所以各位小伙伴,如果觉得有收获,不妨三连走起来,嘻嘻。

自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数初中级Android工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则近万的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年Android移动开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。

LC狂刷66道Dynamic-Programming算法题。跟动态规划说拜拜,程序员,算法,动态规划

LC狂刷66道Dynamic-Programming算法题。跟动态规划说拜拜,程序员,算法,动态规划

LC狂刷66道Dynamic-Programming算法题。跟动态规划说拜拜,程序员,算法,动态规划

LC狂刷66道Dynamic-Programming算法题。跟动态规划说拜拜,程序员,算法,动态规划

LC狂刷66道Dynamic-Programming算法题。跟动态规划说拜拜,程序员,算法,动态规划

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Android开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!

如果你觉得这些内容对你有帮助,可以扫码获取!!(备注:Android)

LC狂刷66道Dynamic-Programming算法题。跟动态规划说拜拜,程序员,算法,动态规划

文末

今天关于面试的分享就到这里,还是那句话,有些东西你不仅要懂,而且要能够很好地表达出来,能够让面试官认可你的理解,例如Handler机制,这个是面试必问之题。有些晦涩的点,或许它只活在面试当中,实际工作当中你压根不会用到它,但是你要知道它是什么东西。

最后在这里小编分享一份自己收录整理上述技术体系图相关的几十套腾讯、头条、阿里、美团等公司2021年的面试题,把技术点整理成了视频和PDF(实际上比预期多花了不少精力),包含知识脉络 + 诸多细节,由于篇幅有限,这里以图片的形式给大家展示一部分。

还有 高级架构技术进阶脑图、Android开发面试专题资料,高级进阶架构资料 帮助大家学习提升进阶,也节省大家在网上搜索资料的时间来学习,也可以分享给身边好友一起学习。

【Android核心高级技术PDF文档,BAT大厂面试真题解析】

LC狂刷66道Dynamic-Programming算法题。跟动态规划说拜拜,程序员,算法,动态规划

【算法合集】

LC狂刷66道Dynamic-Programming算法题。跟动态规划说拜拜,程序员,算法,动态规划

【延伸Android必备知识点】

LC狂刷66道Dynamic-Programming算法题。跟动态规划说拜拜,程序员,算法,动态规划

【Android部分高级架构视频学习资源】

**Android精讲视频领取学习后更加是如虎添翼!**进军BATJ大厂等(备战)!现在都说互联网寒冬,其实无非就是你上错了车,且穿的少(技能),要是你上对车,自身技术能力够强,公司换掉的代价大,怎么可能会被裁掉,都是淘汰末端的业务Curd而已!现如今市场上初级程序员泛滥,这套教程针对Android开发工程师1-6年的人员、正处于瓶颈期,想要年后突破自己涨薪的,进阶Android中高级、架构师对你更是如鱼得水,赶快领取吧!

《Android学习笔记总结+移动架构视频+大厂面试真题+项目实战源码》,点击传送门即可获取!

,其实无非就是你上错了车,且穿的少(技能),要是你上对车,自身技术能力够强,公司换掉的代价大,怎么可能会被裁掉,都是淘汰末端的业务Curd而已!现如今市场上初级程序员泛滥,这套教程针对Android开发工程师1-6年的人员、正处于瓶颈期,想要年后突破自己涨薪的,进阶Android中高级、架构师对你更是如鱼得水,赶快领取吧!文章来源地址https://www.toymoban.com/news/detail-846750.html

《Android学习笔记总结+移动架构视频+大厂面试真题+项目实战源码》,点击传送门即可获取!

到了这里,关于LC狂刷66道Dynamic-Programming算法题。跟动态规划说拜拜的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数据结构与算法:动态规划(Dynamic Programming)详解

    动态规划(Dynamic Programming,简称DP) 是一种在数学、管理科学、计算机科学、经济学和生物信息学等领域中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。动态规划经常被用于求解优化问题。 动态规划的核心思想是将复杂问题分解为更小的子问

    2024年04月25日
    浏览(36)
  • 动态规划Dynamic Programming

     上篇文章我们简单入门了动态规划(一般都是简单的上楼梯,分析数据等问题)点我跳转,今天给大家带来的是路径问题,相对于上一篇在一维中摸爬滚打,这次就要上升到二维解决问题,但都用的是动态规划思想嘛,所以大差不差,且听我慢慢道来。 还是用一样的方法,

    2024年03月27日
    浏览(35)
  • 动态规划(Dynamic Programming)详解

    引言: 动态规划(Dynamic Programming,简称DP)是计算机科学与数学领域中的一个经典算法设计策略,用于解决具有重叠子问题和最优子结构特性的复杂问题。它通过将问题分解为更小的子问题来避免重复计算,从而提高效率。本文旨在详细介绍动态规划的基本概念、原理、实现

    2024年04月13日
    浏览(26)
  • 浅析动态规划(Dynamic Programming,DP)

    动态规划可以理解为递归,只不过递归是通过函数实现,动态规划通过循环实现! 动态规划有多好用我就不过多介绍,写这篇文章的时候我也不是熟练掌握,只是单纯记录一下我的学习经历并分享一些我的心得体会,仅此而已。 推荐看一下这个视频,对你的理解应该会有所

    2024年04月27日
    浏览(25)
  • 【数据结构】动态规划(Dynamic Programming)

    求解决策过程(decision process)最优化的数学方法。 将多阶段决策过程转化为一系列单阶段问题,利用各阶段之间的关系,逐个求解。 与分治法类似,将待求解问题 分解成若干个子问题 。 但是经分解得到的子问题往往 不是相互独立 的。 如果使用分治法求解问题,有些子问

    2024年02月03日
    浏览(35)
  • 算法设计与分析-Dynamic Programming「国科大」卜东波老师

    A robber is planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security system connected and it will automatically contact the police if two adjacent houses were broken into on the same night. (a) Given a list of non-negative integers

    2024年02月22日
    浏览(37)
  • 【Chapter 5】Dynamic Programming(上)

    考前最后一节课明确提到这一部分会考矩阵链乘问题(Matrix Chain)或是最长公共子序列问题(Longest Common Subsequence, LCS),考察的形式是填写DP的Table,因此以blog的方式对复习的过程进行记录,并查缺补漏。 问题描述: 给定 n n n 个矩阵的序列 A 1 , A 2 , . . . , A n A_1, A_2, ..., A_

    2024年02月03日
    浏览(36)
  • 动态规划算法 - LC354. 俄罗斯套娃信封问题

    354. 俄罗斯套娃信封问题 困难 给你一个二维整数数组  envelopes  ,其中  envelopes[i] = [wi, hi]  ,表示第  i  个信封的宽度和高度。 当另一个信封的宽度和高度都比这个信封大的时候,这个信封就可以放进另一个信封里,如同俄罗斯套娃一样。 请计算  最多能有多少个  信封

    2024年04月12日
    浏览(78)
  • Speeding Up Dynamic Programming Computation: Tips and

    作者:禅与计算机程序设计艺术 动态规划(Dynamic programming)是一种解决最优化问题的关键算法。它通过将子问题的解重复计算而节省时间。对于多种问题都可以用动态规划求解。动态规划算法经过几十年的发展,已经成为计算机科学中一个重要的研究领域。然而,如何高效地实

    2024年02月07日
    浏览(82)
  • ​Python—数据结构与算法​---动态规划—DP算法(Dynamic Programing)

    目录 我们一路奋战, 不是为了改变世界, 而是为了不让世界改变我们。 动态规划——DP算法(Dynamic Programing) 一、🏔斐波那契数列(递归VS动态规划) 1、🐒斐波那契数列——递归实现(python语言)——自顶向下 2、🐒斐波那契数列——动态规划实现(python语言)——自底

    2024年02月10日
    浏览(32)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包