1 实验任务
2 系统框架
3 FPGA代码
3.1 顶层模块
`timescale 1ns / 1ps
// Descriptions:OV6540以太网传输视频顶层模块
module ov5640_udp_pc (
input sys_clk_p, //系统时钟
input sys_clk_n, //系统时钟
input sys_rst_n, //系统复位信号,低电平有效
//以太网接口
input eth_rxc, //RGMII接收数据时钟
input eth_rx_ctl, //RGMII输入数据有效信号
input [3:0] eth_rxd, //RGMII输入数据
output eth_txc, //RGMII发送数据时钟
output eth_tx_ctl, //RGMII输出数据有效信号
output [3:0] eth_txd, //RGMII输出数据
//摄像头接口
input cam_pclk, //cmos 数据像素时钟
input cam_vsync, //cmos 场同步信号
input cam_href, //cmos 行同步信号
input [7:0] cam_data, //cmos 数据
output cam_rst_n, //cmos 复位信号,低电平有效
output cam_pwdn, //电源休眠模式选择 0:正常模式 1:电源休眠模式
output cam_scl, //cmos SCCB_SCL线
inout cam_sda //cmos SCCB_SDA线
);
//parameter define
//开发板MAC地址 00-11-22-33-44-55
parameter BOARD_MAC = 48'h00_11_22_33_44_55;
//开发板IP地址 192.168.1.10
parameter BOARD_IP = {8'd192, 8'd168, 8'd1, 8'd10};
//目的MAC地址 ff_ff_ff_ff_ff_ff
parameter DES_MAC = 48'hd2_ab_d5_e9_c6_86;
//目的IP地址 192.168.1.102
parameter DES_IP = {8'd192, 8'd168, 8'd1, 8'd102};
parameter H_CMOS_DISP = 11'd640; //CMOS分辨率640行
parameter V_CMOS_DISP = 11'd480; //CMOS分辨率480列
parameter TOTAL_H_PIXEL = H_CMOS_DISP + 12'd1216; //水平总像素大小
parameter TOTAL_V_PIXEL = V_CMOS_DISP + 12'd504; //垂直总像素大小
parameter SLAVE_ADDR = 7'h3c; //OV5640的器件地址7'h3c
parameter BIT_CTRL = 1'b1; //OV5640的字节地址为16位 0:8位 1:16位
parameter CLK_FREQ = 27'd50_000_000; //i2c_dri模块的驱动时钟频率
parameter I2C_FREQ = 20'd250_000; //I2C的SCL时钟频率,不超过400KHz
//wire define
wire clk_100m; //100Mhz时钟
wire eth_tx_clk; //以太网发送时钟
wire locked;
wire rst_n;
wire i2c_dri_clk; //I2C操作时钟
wire i2c_done; //I2C读写完成信号
wire [ 7:0] i2c_data_r; //I2C读到的数据
wire i2c_exec; //I2C触发信号
wire [23:0] i2c_data; //I2C写地址+数据
wire i2c_rh_wl; //I2C读写控制信号
wire cam_init_done; //摄像头出初始化完成信号
wire cmos_frame_vsync; //输出帧有效场同步信号
wire img_data_en; //摄像头图像有效信号
wire [15:0] img_data; //摄像头图像有效数据
wire transfer_flag; //图像开始传输标志,0:开始传输 1:停止传输
wire eth_rx_clk; //以太网接收时钟
wire udp_tx_start_en; //以太网开始发送信号
wire [15:0] udp_tx_byte_num; //以太网发送的有效字节数
wire [31:0] udp_tx_data; //以太网发送的数据
wire udp_rec_pkt_done; //以太网单包数据接收完成信号
wire udp_rec_en; //以太网接收使能信号
wire [31:0] udp_rec_data; //以太网接收到的数据
wire [15:0] udp_rec_byte_num; //以太网接收到的字节个数
wire udp_tx_req; //以太网发送请求数据信号
wire udp_tx_done; //以太网发送完成信号
//*****************************************************
//** main code
//*****************************************************
assign rst_n = sys_rst_n & locked;
//电源休眠模式选择 0:正常模式 1:电源休眠模式
assign cam_pwdn = 1'b0;
assign cam_rst_n = 1'b1;
//例化时钟IP核
clk_wiz_0 u_clk_wiz_0 (
// Clock out ports
.clk_out1 (clk_100m), // output clk_out1
// Status and control signals
.reset (~sys_rst_n), // input reset
.locked (locked), // output locked
// Clock in ports
.clk_in1_p(sys_clk_p), // input clk_in1_p
.clk_in1_n(sys_clk_n) // input clk_in1_n
);
//I2C配置模块
i2c_ov5640_rgb565_cfg u_i2c_cfg (
.clk (i2c_dri_clk),
.rst_n (rst_n),
.i2c_done (i2c_done),
.i2c_data_r (i2c_data_r),
.cmos_h_pixel (H_CMOS_DISP),
.cmos_v_pixel (V_CMOS_DISP),
.total_h_pixel(TOTAL_H_PIXEL),
.total_v_pixel(TOTAL_V_PIXEL),
.i2c_exec (i2c_exec),
.i2c_data (i2c_data),
.i2c_rh_wl (i2c_rh_wl),
.init_done (cam_init_done)
);
//I2C驱动模块
i2c_dri #(
.SLAVE_ADDR(SLAVE_ADDR), //参数传递
.CLK_FREQ (CLK_FREQ),
.I2C_FREQ (I2C_FREQ)
) u_i2c_dri (
.clk (clk_100m),
.rst_n (rst_n),
//i2c interface
.i2c_exec (i2c_exec),
.bit_ctrl (BIT_CTRL),
.i2c_rh_wl (i2c_rh_wl),
.i2c_addr (i2c_data[23:8]),
.i2c_data_w(i2c_data[7:0]),
.i2c_data_r(i2c_data_r),
.i2c_done (i2c_done),
.i2c_ack (),
.scl (cam_scl),
.sda (cam_sda),
//user interface
.dri_clk (i2c_dri_clk) //I2C操作时钟
);
//摄像头数据采集模块
cmos_capture_data u_cmos_capture_data (
.rst_n (rst_n & cam_init_done),
.cam_pclk (cam_pclk),
.cam_vsync (cam_vsync),
.cam_href (cam_href),
.cam_data (cam_data),
.cmos_frame_vsync(cmos_frame_vsync),
.cmos_frame_href (),
.cmos_frame_valid(img_data_en),
.cmos_frame_data (img_data)
);
//开始传输控制模块
start_transfer_ctrl u_start_transfer_ctrl (
.clk (eth_rx_clk),
.rst_n (rst_n),
.udp_rec_pkt_done(udp_rec_pkt_done),
.udp_rec_en (udp_rec_en),
.udp_rec_data (udp_rec_data),
.udp_rec_byte_num(udp_rec_byte_num),
.transfer_flag (transfer_flag) //图像开始传输标志,1:开始传输 0:停止传输
);
//图像封装模块
img_data_pkt u_img_data_pkt (
.rst_n (rst_n),
.cam_pclk (cam_pclk),
.img_vsync (cmos_frame_vsync),
.img_data_en (img_data_en),
.img_data (img_data),
.transfer_flag (transfer_flag),
.eth_tx_clk (eth_tx_clk),
.udp_tx_req (udp_tx_req),
.udp_tx_done (udp_tx_done),
.udp_tx_start_en(udp_tx_start_en),
.udp_tx_data (udp_tx_data),
.udp_tx_byte_num(udp_tx_byte_num)
);
//以太网顶层模块
eth_top #(
.BOARD_MAC(BOARD_MAC), //参数例化
.BOARD_IP (BOARD_IP),
.DES_MAC (DES_MAC),
.DES_IP (DES_IP)
) u_eth_top (
.sys_rst_n (rst_n), //系统复位信号,低电平有效
//以太网RGMII接口
.eth_rxc (eth_rxc), //RGMII接收数据时钟
.eth_rx_ctl(eth_rx_ctl), //RGMII输入数据有效信号
.eth_rxd (eth_rxd), //RGMII输入数据
.eth_txc (eth_txc), //RGMII发送数据时钟
.eth_tx_ctl(eth_tx_ctl), //RGMII输出数据有效信号
.eth_txd (eth_txd), //RGMII输出数据
.gmii_rx_clk (eth_rx_clk),
.gmii_tx_clk (eth_tx_clk),
.udp_tx_start_en(udp_tx_start_en),
.tx_data (udp_tx_data),
.tx_byte_num (udp_tx_byte_num),
.udp_tx_done (udp_tx_done),
.tx_req (udp_tx_req),
.rec_pkt_done (udp_rec_pkt_done),
.rec_en (udp_rec_en),
.rec_data (udp_rec_data),
.rec_byte_num (udp_rec_byte_num)
);
endmodule
3.2 iic配置模块
`timescale 1ns / 1ps
// Descriptions: iic配置
module i2c_ov5640_rgb565_cfg (
input clk, //时钟信号
input rst_n, //复位信号,低电平有效
input [ 7:0] i2c_data_r, //I2C读出的数据
input i2c_done, //I2C寄存器配置完成信号
input [12:0] cmos_h_pixel,
input [12:0] cmos_v_pixel,
input [12:0] total_h_pixel, //水平总像素大小
input [12:0] total_v_pixel, //垂直总像素大小
output reg i2c_exec, //I2C触发执行信号
output reg [23:0] i2c_data, //I2C要配置的地址与数据(高16位地址,低8位数据)
output reg i2c_rh_wl, //I2C读写控制信号
output reg init_done //初始化完成信号
);
//parameter define
localparam REG_NUM = 8'd250; //总共需要配置的寄存器个数
//reg define
reg [14:0] start_init_cnt; //等待延时计数器
reg [ 7:0] init_reg_cnt; //寄存器配置个数计数器
//*****************************************************
//** main code
//*****************************************************
SCL配置成250KHz,输入的clk时钟频率为1Mhz,周期为1us 20000*1us = 20ms
//OV5640上电到开始配置SCCB至少等待20ms
always @(posedge clk or negedge rst_n) begin
if (!rst_n) start_init_cnt <= 1'b0;
else if (start_init_cnt < 15'd20000) begin
start_init_cnt <= start_init_cnt + 1'b1;
end
end
//寄存器配置个数计数
always @(posedge clk or negedge rst_n) begin
if (!rst_n) init_reg_cnt <= 8'd0;
else if (i2c_exec) init_reg_cnt <= init_reg_cnt + 8'b1;
end
//i2c触发执行信号
always @(posedge clk or negedge rst_n) begin
if (!rst_n) i2c_exec <= 1'b0;
else if (start_init_cnt == 15'd20000 - 1'b1) i2c_exec <= 1'b1;
else if (i2c_done && (init_reg_cnt < REG_NUM)) i2c_exec <= 1'b1;
else i2c_exec <= 1'b0;
end
//配置I2C读写控制信号
always @(posedge clk or negedge rst_n) begin
if (!rst_n) i2c_rh_wl <= 1'b1;
else if (init_reg_cnt == 8'd2) i2c_rh_wl <= 1'b0;
end
//初始化完成信号
always @(posedge clk or negedge rst_n) begin
if (!rst_n) init_done <= 1'b0;
else if ((init_reg_cnt == REG_NUM) && i2c_done) init_done <= 1'b1;
end
//配置寄存器地址与数据
always @(posedge clk or negedge rst_n) begin
if (!rst_n) i2c_data <= 24'b0;
else begin
case (init_reg_cnt)
//先读OV5640 ID
8'd0: i2c_data <= {16'h300a, 8'h0}; //
8'd1: i2c_data <= {16'h300b, 8'h0}; //
8'd2: i2c_data <= {16'h3008, 8'h82}; //Bit[7]:复位 Bit[6]:电源休眠
8'd3: i2c_data <= {16'h3008, 8'h02}; //正常工作模式
8'd4: i2c_data <= {16'h3103, 8'h02}; //Bit[1]:1 PLL Clock
//引脚输入/输出控制 FREX/VSYNC/HREF/PCLK/D[9:6]
8'd5: i2c_data <= {8'h30, 8'h17, 8'hff};
//引脚输入/输出控制 D[5:0]/GPIO1/GPIO0
8'd6: i2c_data <= {16'h3018, 8'hff};
8'd7: i2c_data <= {16'h3037, 8'h13}; //PLL分频控制
8'd8: i2c_data <= {16'h3108, 8'h01}; //系统根分频器
8'd9: i2c_data <= {16'h3630, 8'h36};
8'd10: i2c_data <= {16'h3631, 8'h0e};
8'd11: i2c_data <= {16'h3632, 8'he2};
8'd12: i2c_data <= {16'h3633, 8'h12};
8'd13: i2c_data <= {16'h3621, 8'he0};
8'd14: i2c_data <= {16'h3704, 8'ha0};
8'd15: i2c_data <= {16'h3703, 8'h5a};
8'd16: i2c_data <= {16'h3715, 8'h78};
8'd17: i2c_data <= {16'h3717, 8'h01};
8'd18: i2c_data <= {16'h370b, 8'h60};
8'd19: i2c_data <= {16'h3705, 8'h1a};
8'd20: i2c_data <= {16'h3905, 8'h02};
8'd21: i2c_data <= {16'h3906, 8'h10};
8'd22: i2c_data <= {16'h3901, 8'h0a};
8'd23: i2c_data <= {16'h3731, 8'h12};
8'd24: i2c_data <= {16'h3600, 8'h08}; //VCM控制,用于自动聚焦
8'd25: i2c_data <= {16'h3601, 8'h33}; //VCM控制,用于自动聚焦
8'd26: i2c_data <= {16'h302d, 8'h60}; //系统控制
8'd27: i2c_data <= {16'h3620, 8'h52};
8'd28: i2c_data <= {16'h371b, 8'h20};
8'd29: i2c_data <= {16'h471c, 8'h50};
8'd30: i2c_data <= {16'h3a13, 8'h43}; //AEC(自动曝光控制)
8'd31: i2c_data <= {16'h3a18, 8'h00}; //AEC 增益上限
8'd32: i2c_data <= {16'h3a19, 8'hf8}; //AEC 增益上限
8'd33: i2c_data <= {16'h3635, 8'h13};
8'd34: i2c_data <= {16'h3636, 8'h03};
8'd35: i2c_data <= {16'h3634, 8'h40};
8'd36: i2c_data <= {16'h3622, 8'h01};
8'd37: i2c_data <= {16'h3c01, 8'h34};
8'd38: i2c_data <= {16'h3c04, 8'h28};
8'd39: i2c_data <= {16'h3c05, 8'h98};
8'd40: i2c_data <= {16'h3c06, 8'h00}; //light meter 1 阈值[15:8]
8'd41: i2c_data <= {16'h3c07, 8'h08}; //light meter 1 阈值[7:0]
8'd42: i2c_data <= {16'h3c08, 8'h00}; //light meter 2 阈值[15:8]
8'd43: i2c_data <= {16'h3c09, 8'h1c}; //light meter 2 阈值[7:0]
8'd44: i2c_data <= {16'h3c0a, 8'h9c}; //sample number[15:8]
8'd45: i2c_data <= {16'h3c0b, 8'h40}; //sample number[7:0]
8'd46: i2c_data <= {16'h3810, 8'h00}; //Timing Hoffset[11:8]
8'd47: i2c_data <= {16'h3811, 8'h10}; //Timing Hoffset[7:0]
8'd48: i2c_data <= {16'h3812, 8'h00}; //Timing Voffset[10:8]
8'd49: i2c_data <= {16'h3708, 8'h64};
8'd50: i2c_data <= {16'h4001, 8'h02}; //BLC(黑电平校准)补偿起始行号
8'd51: i2c_data <= {16'h4005, 8'h1a}; //BLC(黑电平校准)补偿始终更新
8'd52: i2c_data <= {16'h3000, 8'h00}; //系统块复位控制
8'd53: i2c_data <= {16'h3004, 8'hff}; //时钟使能控制
8'd54: i2c_data <= {16'h4300, 8'h61}; //格式控制 RGB565
8'd55: i2c_data <= {16'h501f, 8'h01}; //ISP RGB
8'd56: i2c_data <= {16'h440e, 8'h00};
8'd57: i2c_data <= {16'h5000, 8'ha7}; //ISP控制
8'd58: i2c_data <= {16'h3a0f, 8'h30}; //AEC控制;stable range in high
8'd59: i2c_data <= {16'h3a10, 8'h28}; //AEC控制;stable range in low
8'd60: i2c_data <= {16'h3a1b, 8'h30}; //AEC控制;stable range out high
8'd61: i2c_data <= {16'h3a1e, 8'h26}; //AEC控制;stable range out low
8'd62: i2c_data <= {16'h3a11, 8'h60}; //AEC控制; fast zone high
8'd63: i2c_data <= {16'h3a1f, 8'h14}; //AEC控制; fast zone low
//LENC(镜头校正)控制 16'h5800~16'h583d
8'd64: i2c_data <= {16'h5800, 8'h23};
8'd65: i2c_data <= {16'h5801, 8'h14};
8'd66: i2c_data <= {16'h5802, 8'h0f};
8'd67: i2c_data <= {16'h5803, 8'h0f};
8'd68: i2c_data <= {16'h5804, 8'h12};
8'd69: i2c_data <= {16'h5805, 8'h26};
8'd70: i2c_data <= {16'h5806, 8'h0c};
8'd71: i2c_data <= {16'h5807, 8'h08};
8'd72: i2c_data <= {16'h5808, 8'h05};
8'd73: i2c_data <= {16'h5809, 8'h05};
8'd74: i2c_data <= {16'h580a, 8'h08};
8'd75: i2c_data <= {16'h580b, 8'h0d};
8'd76: i2c_data <= {16'h580c, 8'h08};
8'd77: i2c_data <= {16'h580d, 8'h03};
8'd78: i2c_data <= {16'h580e, 8'h00};
8'd79: i2c_data <= {16'h580f, 8'h00};
8'd80: i2c_data <= {16'h5810, 8'h03};
8'd81: i2c_data <= {16'h5811, 8'h09};
8'd82: i2c_data <= {16'h5812, 8'h07};
8'd83: i2c_data <= {16'h5813, 8'h03};
8'd84: i2c_data <= {16'h5814, 8'h00};
8'd85: i2c_data <= {16'h5815, 8'h01};
8'd86: i2c_data <= {16'h5816, 8'h03};
8'd87: i2c_data <= {16'h5817, 8'h08};
8'd88: i2c_data <= {16'h5818, 8'h0d};
8'd89: i2c_data <= {16'h5819, 8'h08};
8'd90: i2c_data <= {16'h581a, 8'h05};
8'd91: i2c_data <= {16'h581b, 8'h06};
8'd92: i2c_data <= {16'h581c, 8'h08};
8'd93: i2c_data <= {16'h581d, 8'h0e};
8'd94: i2c_data <= {16'h581e, 8'h29};
8'd95: i2c_data <= {16'h581f, 8'h17};
8'd96: i2c_data <= {16'h5820, 8'h11};
8'd97: i2c_data <= {16'h5821, 8'h11};
8'd98: i2c_data <= {16'h5822, 8'h15};
8'd99: i2c_data <= {16'h5823, 8'h28};
8'd100: i2c_data <= {16'h5824, 8'h46};
8'd101: i2c_data <= {16'h5825, 8'h26};
8'd102: i2c_data <= {16'h5826, 8'h08};
8'd103: i2c_data <= {16'h5827, 8'h26};
8'd104: i2c_data <= {16'h5828, 8'h64};
8'd105: i2c_data <= {16'h5829, 8'h26};
8'd106: i2c_data <= {16'h582a, 8'h24};
8'd107: i2c_data <= {16'h582b, 8'h22};
8'd108: i2c_data <= {16'h582c, 8'h24};
8'd109: i2c_data <= {16'h582d, 8'h24};
8'd110: i2c_data <= {16'h582e, 8'h06};
8'd111: i2c_data <= {16'h582f, 8'h22};
8'd112: i2c_data <= {16'h5830, 8'h40};
8'd113: i2c_data <= {16'h5831, 8'h42};
8'd114: i2c_data <= {16'h5832, 8'h24};
8'd115: i2c_data <= {16'h5833, 8'h26};
8'd116: i2c_data <= {16'h5834, 8'h24};
8'd117: i2c_data <= {16'h5835, 8'h22};
8'd118: i2c_data <= {16'h5836, 8'h22};
8'd119: i2c_data <= {16'h5837, 8'h26};
8'd120: i2c_data <= {16'h5838, 8'h44};
8'd121: i2c_data <= {16'h5839, 8'h24};
8'd122: i2c_data <= {16'h583a, 8'h26};
8'd123: i2c_data <= {16'h583b, 8'h28};
8'd124: i2c_data <= {16'h583c, 8'h42};
8'd125: i2c_data <= {16'h583d, 8'hce};
//AWB(自动白平衡控制) 16'h5180~16'h519e
8'd126: i2c_data <= {16'h5180, 8'hff};
8'd127: i2c_data <= {16'h5181, 8'hf2};
8'd128: i2c_data <= {16'h5182, 8'h00};
8'd129: i2c_data <= {16'h5183, 8'h14};
8'd130: i2c_data <= {16'h5184, 8'h25};
8'd131: i2c_data <= {16'h5185, 8'h24};
8'd132: i2c_data <= {16'h5186, 8'h09};
8'd133: i2c_data <= {16'h5187, 8'h09};
8'd134: i2c_data <= {16'h5188, 8'h09};
8'd135: i2c_data <= {16'h5189, 8'h75};
8'd136: i2c_data <= {16'h518a, 8'h54};
8'd137: i2c_data <= {16'h518b, 8'he0};
8'd138: i2c_data <= {16'h518c, 8'hb2};
8'd139: i2c_data <= {16'h518d, 8'h42};
8'd140: i2c_data <= {16'h518e, 8'h3d};
8'd141: i2c_data <= {16'h518f, 8'h56};
8'd142: i2c_data <= {16'h5190, 8'h46};
8'd143: i2c_data <= {16'h5191, 8'hf8};
8'd144: i2c_data <= {16'h5192, 8'h04};
8'd145: i2c_data <= {16'h5193, 8'h70};
8'd146: i2c_data <= {16'h5194, 8'hf0};
8'd147: i2c_data <= {16'h5195, 8'hf0};
8'd148: i2c_data <= {16'h5196, 8'h03};
8'd149: i2c_data <= {16'h5197, 8'h01};
8'd150: i2c_data <= {16'h5198, 8'h04};
8'd151: i2c_data <= {16'h5199, 8'h12};
8'd152: i2c_data <= {16'h519a, 8'h04};
8'd153: i2c_data <= {16'h519b, 8'h00};
8'd154: i2c_data <= {16'h519c, 8'h06};
8'd155: i2c_data <= {16'h519d, 8'h82};
8'd156: i2c_data <= {16'h519e, 8'h38};
//Gamma(伽马)控制 16'h5480~16'h5490
8'd157: i2c_data <= {16'h5480, 8'h01};
8'd158: i2c_data <= {16'h5481, 8'h08};
8'd159: i2c_data <= {16'h5482, 8'h14};
8'd160: i2c_data <= {16'h5483, 8'h28};
8'd161: i2c_data <= {16'h5484, 8'h51};
8'd162: i2c_data <= {16'h5485, 8'h65};
8'd163: i2c_data <= {16'h5486, 8'h71};
8'd164: i2c_data <= {16'h5487, 8'h7d};
8'd165: i2c_data <= {16'h5488, 8'h87};
8'd166: i2c_data <= {16'h5489, 8'h91};
8'd167: i2c_data <= {16'h548a, 8'h9a};
8'd168: i2c_data <= {16'h548b, 8'haa};
8'd169: i2c_data <= {16'h548c, 8'hb8};
8'd170: i2c_data <= {16'h548d, 8'hcd};
8'd171: i2c_data <= {16'h548e, 8'hdd};
8'd172: i2c_data <= {16'h548f, 8'hea};
8'd173: i2c_data <= {16'h5490, 8'h1d};
//CMX(彩色矩阵控制) 16'h5381~16'h538b
8'd174: i2c_data <= {16'h5381, 8'h1e};
8'd175: i2c_data <= {16'h5382, 8'h5b};
8'd176: i2c_data <= {16'h5383, 8'h08};
8'd177: i2c_data <= {16'h5384, 8'h0a};
8'd178: i2c_data <= {16'h5385, 8'h7e};
8'd179: i2c_data <= {16'h5386, 8'h88};
8'd180: i2c_data <= {16'h5387, 8'h7c};
8'd181: i2c_data <= {16'h5388, 8'h6c};
8'd182: i2c_data <= {16'h5389, 8'h10};
8'd183: i2c_data <= {16'h538a, 8'h01};
8'd184: i2c_data <= {16'h538b, 8'h98};
//SDE(特殊数码效果)控制 16'h5580~16'h558b
8'd185: i2c_data <= {16'h5580, 8'h06};
8'd186: i2c_data <= {16'h5583, 8'h40};
8'd187: i2c_data <= {16'h5584, 8'h10};
8'd188: i2c_data <= {16'h5589, 8'h10};
8'd189: i2c_data <= {16'h558a, 8'h00};
8'd190: i2c_data <= {16'h558b, 8'hf8};
8'd191: i2c_data <= {16'h501d, 8'h40}; //ISP MISC
//CIP(颜色插值)控制 (16'h5300~16'h530c)
8'd192: i2c_data <= {16'h5300, 8'h08};
8'd193: i2c_data <= {16'h5301, 8'h30};
8'd194: i2c_data <= {16'h5302, 8'h10};
8'd195: i2c_data <= {16'h5303, 8'h00};
8'd196: i2c_data <= {16'h5304, 8'h08};
8'd197: i2c_data <= {16'h5305, 8'h30};
8'd198: i2c_data <= {16'h5306, 8'h08};
8'd199: i2c_data <= {16'h5307, 8'h16};
8'd200: i2c_data <= {16'h5309, 8'h08};
8'd201: i2c_data <= {16'h530a, 8'h30};
8'd202: i2c_data <= {16'h530b, 8'h04};
8'd203: i2c_data <= {16'h530c, 8'h06};
8'd204: i2c_data <= {16'h5025, 8'h00};
//系统时钟分频 Bit[7:4]:系统时钟分频 input clock =24Mhz, PCLK = 48Mhz
8'd205: i2c_data <= {16'h3035, 8'h11};
8'd206: i2c_data <= {16'h3036, 8'h3c}; //PLL倍频
8'd207: i2c_data <= {16'h3c07, 8'h08};
//时序控制 16'h3800~16'h3821
8'd208: i2c_data <= {16'h3820, 8'h46};
8'd209: i2c_data <= {16'h3821, 8'h01};
8'd210: i2c_data <= {16'h3814, 8'h31};
8'd211: i2c_data <= {16'h3815, 8'h31};
8'd212: i2c_data <= {16'h3800, 8'h00};
8'd213: i2c_data <= {16'h3801, 8'h00};
8'd214: i2c_data <= {16'h3802, 8'h00};
8'd215: i2c_data <= {16'h3803, 8'h04};
8'd216: i2c_data <= {16'h3804, 8'h0a};
8'd217: i2c_data <= {16'h3805, 8'h3f};
8'd218: i2c_data <= {16'h3806, 8'h07};
8'd219: i2c_data <= {16'h3807, 8'h9b};
//设置输出像素个数
//DVP 输出水平像素点数高4位
8'd220: i2c_data <= {16'h3808, {4'd0, cmos_h_pixel[11:8]}};
//DVP 输出水平像素点数低8位
8'd221: i2c_data <= {16'h3809, cmos_h_pixel[7:0]};
//DVP 输出垂直像素点数高3位
8'd222: i2c_data <= {16'h380a, {5'd0, cmos_v_pixel[10:8]}};
//DVP 输出垂直像素点数低8位
8'd223: i2c_data <= {16'h380b, cmos_v_pixel[7:0]};
//水平总像素大小高5位
8'd224: i2c_data <= {16'h380c, {3'd0, total_h_pixel[12:8]}};
//水平总像素大小低8位
8'd225: i2c_data <= {16'h380d, total_h_pixel[7:0]};
//垂直总像素大小高5位
8'd226: i2c_data <= {16'h380e, {3'd0, total_v_pixel[12:8]}};
//垂直总像素大小低8位
8'd227: i2c_data <= {16'h380f, total_v_pixel[7:0]};
8'd228: i2c_data <= {16'h3813, 8'h06};
8'd229: i2c_data <= {16'h3618, 8'h00};
8'd230: i2c_data <= {16'h3612, 8'h29};
8'd231: i2c_data <= {16'h3709, 8'h52};
8'd232: i2c_data <= {16'h370c, 8'h03};
8'd233: i2c_data <= {16'h3a02, 8'h17}; //60Hz max exposure
8'd234: i2c_data <= {16'h3a03, 8'h10}; //60Hz max exposure
8'd235: i2c_data <= {16'h3a14, 8'h17}; //50Hz max exposure
8'd236: i2c_data <= {16'h3a15, 8'h10}; //50Hz max exposure
8'd237: i2c_data <= {16'h4004, 8'h02}; //BLC(背光) 2 lines
8'd238: i2c_data <= {16'h4713, 8'h03}; //JPEG mode 3
8'd239: i2c_data <= {16'h4407, 8'h04}; //量化标度
8'd240: i2c_data <= {16'h460c, 8'h22};
8'd241: i2c_data <= {16'h4837, 8'h22}; //DVP CLK divider
8'd242: i2c_data <= {16'h3824, 8'h02}; //DVP CLK divider
8'd243: i2c_data <= {16'h5001, 8'ha3}; //ISP 控制
8'd244: i2c_data <= {16'h3b07, 8'h0a}; //帧曝光模式
//彩条测试使能
8'd245: i2c_data <= {16'h503d, 8'h00}; //8'h00:正常模式 8'h80:彩条显示
//测试闪光灯功能
8'd246: i2c_data <= {16'h3016, 8'h02};
8'd247: i2c_data <= {16'h301c, 8'h02};
8'd248: i2c_data <= {16'h3019, 8'h02}; //打开闪光灯
8'd249: i2c_data <= {16'h3019, 8'h00}; //关闭闪光灯
//只读存储器,防止在case中没有列举的情况,之前的寄存器被重复改写
default: i2c_data <= {16'h300a, 8'h00}; //器件ID高8位
endcase
end
end
endmodule
3.3 iic驱动模块
`timescale 1ns / 1ps
//IIC驱动模块
module i2c_dri #(
parameter SLAVE_ADDR = 7'b1010000 , //EEPROM从机地址
parameter CLK_FREQ = 26'd50_000_000, //模块输入的时钟频率
parameter I2C_FREQ = 18'd250_000 //IIC_SCL的时钟频率
) (
input clk,
input rst_n,
//i2c interface
input i2c_exec, //I2C触发执行信号
input bit_ctrl, //字地址位控制(16b/8b)
input i2c_rh_wl, //I2C读写控制信号
input [15:0] i2c_addr, //I2C器件内地址
input [ 7:0] i2c_data_w, //I2C要写的数据
output reg [ 7:0] i2c_data_r, //I2C读出的数据
output reg i2c_done, //I2C一次操作完成
output reg i2c_ack, //I2C应答标志 0:应答 1:未应答
output reg scl, //I2C的SCL时钟信号
inout sda, //I2C的SDA信号
//user interface
output reg dri_clk //驱动I2C操作的驱动时钟
);
//localparam define
localparam st_idle = 8'b0000_0001; //空闲状态
localparam st_sladdr = 8'b0000_0010; //发送器件地址(slave address)
localparam st_addr16 = 8'b0000_0100; //发送16位字地址
localparam st_addr8 = 8'b0000_1000; //发送8位字地址
localparam st_data_wr = 8'b0001_0000; //写数据(8 bit)
localparam st_addr_rd = 8'b0010_0000; //发送器件地址读
localparam st_data_rd = 8'b0100_0000; //读数据(8 bit)
localparam st_stop = 8'b1000_0000; //结束I2C操作
//reg define
reg sda_dir; //I2C数据(SDA)方向控制
reg sda_out; //SDA输出信号
reg st_done; //状态结束
reg wr_flag; //写标志
reg [ 6:0] cnt; //计数
reg [ 7:0] cur_state; //状态机当前状态
reg [ 7:0] next_state; //状态机下一状态
reg [15:0] addr_t; //地址
reg [ 7:0] data_r; //读取的数据
reg [ 7:0] data_wr_t; //I2C需写的数据的临时寄存
reg [ 9:0] clk_cnt; //分频时钟计数
//wire define
wire sda_in; //SDA输入信号
wire [ 8:0] clk_divide; //模块驱动时钟的分频系数
//*****************************************************
//** main code
//*****************************************************
//SDA控制
assign sda = sda_dir ? sda_out : 1'bz; //SDA数据输出或高阻
assign sda_in = sda; //SDA数据输入
assign clk_divide = (CLK_FREQ / I2C_FREQ) >> 2'd2; //模块驱动时钟的分频系数
//生成I2C的SCL的四倍频率的驱动时钟用于驱动i2c的操作
always @(posedge clk or negedge rst_n) begin
if (!rst_n) begin
dri_clk <= 1'b0;
clk_cnt <= 10'd0;
end else if (clk_cnt == clk_divide[8:1] - 1'd1) begin
clk_cnt <= 10'd0;
dri_clk <= ~dri_clk;
end else clk_cnt <= clk_cnt + 1'b1;
end
//(三段式状态机)同步时序描述状态转移
always @(posedge dri_clk or negedge rst_n) begin
if (!rst_n) cur_state <= st_idle;
else cur_state <= next_state;
end
//组合逻辑判断状态转移条件
always @(*) begin
next_state = st_idle;
case (cur_state)
st_idle: begin //空闲状态
if (i2c_exec) begin
next_state = st_sladdr;
end else next_state = st_idle;
end
st_sladdr: begin
if (st_done) begin
if (bit_ctrl) //判断是16位还是8位字地址
next_state = st_addr16;
else next_state = st_addr8;
end else next_state = st_sladdr;
end
st_addr16: begin //写16位字地址
if (st_done) begin
next_state = st_addr8;
end else begin
next_state = st_addr16;
end
end
st_addr8: begin //8位字地址
if (st_done) begin
if (wr_flag == 1'b0) //读写判断
next_state = st_data_wr;
else next_state = st_addr_rd;
end else begin
next_state = st_addr8;
end
end
st_data_wr: begin //写数据(8 bit)
if (st_done) next_state = st_stop;
else next_state = st_data_wr;
end
st_addr_rd: begin //写地址以进行读数据
if (st_done) begin
next_state = st_data_rd;
end else begin
next_state = st_addr_rd;
end
end
st_data_rd: begin //读取数据(8 bit)
if (st_done) next_state = st_stop;
else next_state = st_data_rd;
end
st_stop: begin //结束I2C操作
if (st_done) next_state = st_idle;
else next_state = st_stop;
end
default: next_state = st_idle;
endcase
end
//时序电路描述状态输出
always @(posedge dri_clk or negedge rst_n) begin
//复位初始化
if (!rst_n) begin
scl <= 1'b1;
sda_out <= 1'b1;
sda_dir <= 1'b1;
i2c_done <= 1'b0;
i2c_ack <= 1'b0;
cnt <= 1'b0;
st_done <= 1'b0;
data_r <= 1'b0;
i2c_data_r <= 1'b0;
wr_flag <= 1'b0;
addr_t <= 1'b0;
data_wr_t <= 1'b0;
end else begin
st_done <= 1'b0;
cnt <= cnt + 1'b1;
case (cur_state)
st_idle: begin //空闲状态
scl <= 1'b1;
sda_out <= 1'b1;
sda_dir <= 1'b1;
i2c_done <= 1'b0;
cnt <= 7'b0;
if (i2c_exec) begin
wr_flag <= i2c_rh_wl ;
addr_t <= i2c_addr ;
data_wr_t <= i2c_data_w;
i2c_ack <= 1'b0;
end
end
st_sladdr: begin //写地址(器件地址和字地址)
case (cnt)
7'd1: sda_out <= 1'b0; //开始I2C
7'd3: scl <= 1'b0;
7'd4: sda_out <= SLAVE_ADDR[6]; //传送器件地址
7'd5: scl <= 1'b1;
7'd7: scl <= 1'b0;
7'd8: sda_out <= SLAVE_ADDR[5];
7'd9: scl <= 1'b1;
7'd11: scl <= 1'b0;
7'd12: sda_out <= SLAVE_ADDR[4];
7'd13: scl <= 1'b1;
7'd15: scl <= 1'b0;
7'd16: sda_out <= SLAVE_ADDR[3];
7'd17: scl <= 1'b1;
7'd19: scl <= 1'b0;
7'd20: sda_out <= SLAVE_ADDR[2];
7'd21: scl <= 1'b1;
7'd23: scl <= 1'b0;
7'd24: sda_out <= SLAVE_ADDR[1];
7'd25: scl <= 1'b1;
7'd27: scl <= 1'b0;
7'd28: sda_out <= SLAVE_ADDR[0];
7'd29: scl <= 1'b1;
7'd31: scl <= 1'b0;
7'd32: sda_out <= 1'b0; //0:写
7'd33: scl <= 1'b1;
7'd35: scl <= 1'b0;
7'd36: begin
sda_dir <= 1'b0;
sda_out <= 1'b1;
end
7'd37: scl <= 1'b1;
7'd38: begin //从机应答
st_done <= 1'b1;
if (sda_in == 1'b1) //高电平表示未应答
i2c_ack <= 1'b1; //拉高应答标志位
end
7'd39: begin
scl <= 1'b0;
cnt <= 1'b0;
end
default: ;
endcase
end
st_addr16: begin
case (cnt)
7'd0: begin
sda_dir <= 1'b1;
sda_out <= addr_t[15]; //传送字地址
end
7'd1: scl <= 1'b1;
7'd3: scl <= 1'b0;
7'd4: sda_out <= addr_t[14];
7'd5: scl <= 1'b1;
7'd7: scl <= 1'b0;
7'd8: sda_out <= addr_t[13];
7'd9: scl <= 1'b1;
7'd11: scl <= 1'b0;
7'd12: sda_out <= addr_t[12];
7'd13: scl <= 1'b1;
7'd15: scl <= 1'b0;
7'd16: sda_out <= addr_t[11];
7'd17: scl <= 1'b1;
7'd19: scl <= 1'b0;
7'd20: sda_out <= addr_t[10];
7'd21: scl <= 1'b1;
7'd23: scl <= 1'b0;
7'd24: sda_out <= addr_t[9];
7'd25: scl <= 1'b1;
7'd27: scl <= 1'b0;
7'd28: sda_out <= addr_t[8];
7'd29: scl <= 1'b1;
7'd31: scl <= 1'b0;
7'd32: begin
sda_dir <= 1'b0;
sda_out <= 1'b1;
end
7'd33: scl <= 1'b1;
7'd34: begin //从机应答
st_done <= 1'b1;
if (sda_in == 1'b1) //高电平表示未应答
i2c_ack <= 1'b1; //拉高应答标志位
end
7'd35: begin
scl <= 1'b0;
cnt <= 1'b0;
end
default: ;
endcase
end
st_addr8: begin
case (cnt)
7'd0: begin
sda_dir <= 1'b1;
sda_out <= addr_t[7]; //字地址
end
7'd1: scl <= 1'b1;
7'd3: scl <= 1'b0;
7'd4: sda_out <= addr_t[6];
7'd5: scl <= 1'b1;
7'd7: scl <= 1'b0;
7'd8: sda_out <= addr_t[5];
7'd9: scl <= 1'b1;
7'd11: scl <= 1'b0;
7'd12: sda_out <= addr_t[4];
7'd13: scl <= 1'b1;
7'd15: scl <= 1'b0;
7'd16: sda_out <= addr_t[3];
7'd17: scl <= 1'b1;
7'd19: scl <= 1'b0;
7'd20: sda_out <= addr_t[2];
7'd21: scl <= 1'b1;
7'd23: scl <= 1'b0;
7'd24: sda_out <= addr_t[1];
7'd25: scl <= 1'b1;
7'd27: scl <= 1'b0;
7'd28: sda_out <= addr_t[0];
7'd29: scl <= 1'b1;
7'd31: scl <= 1'b0;
7'd32: begin
sda_dir <= 1'b0;
sda_out <= 1'b1;
end
7'd33: scl <= 1'b1;
7'd34: begin //从机应答
st_done <= 1'b1;
if (sda_in == 1'b1) //高电平表示未应答
i2c_ack <= 1'b1; //拉高应答标志位
end
7'd35: begin
scl <= 1'b0;
cnt <= 1'b0;
end
default: ;
endcase
end
st_data_wr: begin //写数据(8 bit)
case (cnt)
7'd0: begin
sda_out <= data_wr_t[7]; //I2C写8位数据
sda_dir <= 1'b1;
end
7'd1: scl <= 1'b1;
7'd3: scl <= 1'b0;
7'd4: sda_out <= data_wr_t[6];
7'd5: scl <= 1'b1;
7'd7: scl <= 1'b0;
7'd8: sda_out <= data_wr_t[5];
7'd9: scl <= 1'b1;
7'd11: scl <= 1'b0;
7'd12: sda_out <= data_wr_t[4];
7'd13: scl <= 1'b1;
7'd15: scl <= 1'b0;
7'd16: sda_out <= data_wr_t[3];
7'd17: scl <= 1'b1;
7'd19: scl <= 1'b0;
7'd20: sda_out <= data_wr_t[2];
7'd21: scl <= 1'b1;
7'd23: scl <= 1'b0;
7'd24: sda_out <= data_wr_t[1];
7'd25: scl <= 1'b1;
7'd27: scl <= 1'b0;
7'd28: sda_out <= data_wr_t[0];
7'd29: scl <= 1'b1;
7'd31: scl <= 1'b0;
7'd32: begin
sda_dir <= 1'b0;
sda_out <= 1'b1;
end
7'd33: scl <= 1'b1;
7'd34: begin //从机应答
st_done <= 1'b1;
if (sda_in == 1'b1) //高电平表示未应答
i2c_ack <= 1'b1; //拉高应答标志位
end
7'd35: begin
scl <= 1'b0;
cnt <= 1'b0;
end
default: ;
endcase
end
st_addr_rd: begin //写地址以进行读数据
case (cnt)
7'd0: begin
sda_dir <= 1'b1;
sda_out <= 1'b1;
end
7'd1: scl <= 1'b1;
7'd2: sda_out <= 1'b0; //重新开始
7'd3: scl <= 1'b0;
7'd4: sda_out <= SLAVE_ADDR[6]; //传送器件地址
7'd5: scl <= 1'b1;
7'd7: scl <= 1'b0;
7'd8: sda_out <= SLAVE_ADDR[5];
7'd9: scl <= 1'b1;
7'd11: scl <= 1'b0;
7'd12: sda_out <= SLAVE_ADDR[4];
7'd13: scl <= 1'b1;
7'd15: scl <= 1'b0;
7'd16: sda_out <= SLAVE_ADDR[3];
7'd17: scl <= 1'b1;
7'd19: scl <= 1'b0;
7'd20: sda_out <= SLAVE_ADDR[2];
7'd21: scl <= 1'b1;
7'd23: scl <= 1'b0;
7'd24: sda_out <= SLAVE_ADDR[1];
7'd25: scl <= 1'b1;
7'd27: scl <= 1'b0;
7'd28: sda_out <= SLAVE_ADDR[0];
7'd29: scl <= 1'b1;
7'd31: scl <= 1'b0;
7'd32: sda_out <= 1'b1; //1:读
7'd33: scl <= 1'b1;
7'd35: scl <= 1'b0;
7'd36: begin
sda_dir <= 1'b0;
sda_out <= 1'b1;
end
7'd37: scl <= 1'b1;
7'd38: begin //从机应答
st_done <= 1'b1;
if (sda_in == 1'b1) //高电平表示未应答
i2c_ack <= 1'b1; //拉高应答标志位
end
7'd39: begin
scl <= 1'b0;
cnt <= 1'b0;
end
default: ;
endcase
end
st_data_rd: begin //读取数据(8 bit)
case (cnt)
7'd0: sda_dir <= 1'b0;
7'd1: begin
data_r[7] <= sda_in;
scl <= 1'b1;
end
7'd3: scl <= 1'b0;
7'd5: begin
data_r[6] <= sda_in;
scl <= 1'b1;
end
7'd7: scl <= 1'b0;
7'd9: begin
data_r[5] <= sda_in;
scl <= 1'b1;
end
7'd11: scl <= 1'b0;
7'd13: begin
data_r[4] <= sda_in;
scl <= 1'b1;
end
7'd15: scl <= 1'b0;
7'd17: begin
data_r[3] <= sda_in;
scl <= 1'b1;
end
7'd19: scl <= 1'b0;
7'd21: begin
data_r[2] <= sda_in;
scl <= 1'b1;
end
7'd23: scl <= 1'b0;
7'd25: begin
data_r[1] <= sda_in;
scl <= 1'b1;
end
7'd27: scl <= 1'b0;
7'd29: begin
data_r[0] <= sda_in;
scl <= 1'b1;
end
7'd31: scl <= 1'b0;
7'd32: begin
sda_dir <= 1'b1;
sda_out <= 1'b1;
end
7'd33: scl <= 1'b1;
7'd34: st_done <= 1'b1; //非应答
7'd35: begin
scl <= 1'b0;
cnt <= 1'b0;
i2c_data_r <= data_r;
end
default: ;
endcase
end
st_stop: begin //结束I2C操作
case (cnt)
7'd0: begin
sda_dir <= 1'b1; //结束I2C
sda_out <= 1'b0;
end
7'd1: scl <= 1'b1;
7'd3: sda_out <= 1'b1;
7'd15: st_done <= 1'b1;
7'd16: begin
cnt <= 1'b0;
i2c_done <= 1'b1; //向上层模块传递I2C结束信号
end
default: ;
endcase
end
endcase
end
end
endmodule
3.4 摄像头数据采集模块
`timescale 1ns / 1ps
//摄像头数据采集模块
module cmos_capture_data (
input rst_n, //复位信号
//摄像头接口
input cam_pclk, //cmos 数据像素时钟
input cam_vsync, //cmos 场同步信号
input cam_href, //cmos 行同步信号
input [ 7:0] cam_data,
//用户接口
output cmos_frame_vsync, //帧有效信号
output cmos_frame_href, //行有效信号
output cmos_frame_valid, //数据有效使能信号
output [15:0] cmos_frame_data //有效数据
);
//寄存器全部配置完成后,先等待10帧数据
//待寄存器配置生效后再开始采集图像
parameter WAIT_FRAME = 4'd10; //寄存器数据稳定等待的帧个数
//reg define
reg cam_vsync_d0;
reg cam_vsync_d1;
reg cam_href_d0;
reg cam_href_d1;
reg [ 3:0] cmos_ps_cnt; //等待帧数稳定计数器
reg [ 7:0] cam_data_d0;
reg [15:0] cmos_data_t; //用于8位转16位的临时寄存器
reg byte_flag; //16位RGB数据转换完成的标志信号
reg byte_flag_d0;
reg frame_val_flag; //帧有效的标志
wire pos_vsync; //采输入场同步信号的上升沿
//*****************************************************
//** main code
//*****************************************************
//采输入场同步信号的上升沿
assign pos_vsync = (~cam_vsync_d1) & cam_vsync_d0;
//输出帧有效信号
assign cmos_frame_vsync = frame_val_flag ? cam_vsync_d1 : 1'b0;
//输出行有效信号
assign cmos_frame_href = frame_val_flag ? cam_href_d1 : 1'b0;
//输出数据使能有效信号
assign cmos_frame_valid = frame_val_flag ? byte_flag_d0 : 1'b0;
//输出数据
assign cmos_frame_data = frame_val_flag ? cmos_data_t : 1'b0;
always @(posedge cam_pclk or negedge rst_n) begin
if (!rst_n) begin
cam_vsync_d0 <= 1'b0;
cam_vsync_d1 <= 1'b0;
cam_href_d0 <= 1'b0;
cam_href_d1 <= 1'b0;
end else begin
cam_vsync_d0 <= cam_vsync;
cam_vsync_d1 <= cam_vsync_d0;
cam_href_d0 <= cam_href;
cam_href_d1 <= cam_href_d0;
end
end
//对帧数进行计数
always @(posedge cam_pclk or negedge rst_n) begin
if (!rst_n) cmos_ps_cnt <= 4'd0;
else if (pos_vsync && (cmos_ps_cnt < WAIT_FRAME)) cmos_ps_cnt <= cmos_ps_cnt + 4'd1;
end
//帧有效标志
always @(posedge cam_pclk or negedge rst_n) begin
if (!rst_n) frame_val_flag <= 1'b0;
else if ((cmos_ps_cnt == WAIT_FRAME) && pos_vsync) frame_val_flag <= 1'b1;
else;
end
//8位数据转16位RGB565数据
always @(posedge cam_pclk or negedge rst_n) begin
if (!rst_n) begin
cmos_data_t <= 16'd0;
cam_data_d0 <= 8'd0;
byte_flag <= 1'b0;
end else if (cam_href) begin
byte_flag <= ~byte_flag;
cam_data_d0 <= cam_data;
if (byte_flag) cmos_data_t <= {cam_data_d0, cam_data};
else;
end else begin
byte_flag <= 1'b0;
cam_data_d0 <= 8'b0;
end
end
//产生输出数据有效信号(cmos_frame_valid)
always @(posedge cam_pclk or negedge rst_n) begin
if (!rst_n) byte_flag_d0 <= 1'b0;
else byte_flag_d0 <= byte_flag;
end
endmodule
3.5 图像开始传输控制模块
`timescale 1ns / 1ps
//图像开始传输控制模块
module start_transfer_ctrl (
input clk, //时钟信号
input rst_n, //复位信号,低电平有效
input udp_rec_pkt_done, //GMII接收时钟
input udp_rec_en, //UDP单包数据接收完成信号
input [31:0] udp_rec_data, //UDP接收的数据使能信号
input [15:0] udp_rec_byte_num, //UDP接收的数据
//UDP接收到的字节数
output reg transfer_flag //图像开始传输标志,0:开始传输 1:停止传输
);
//parameter define
parameter START = "1"; //开始命令
parameter STOP = "0"; //停止命令
//*****************************************************
//** main code
//*****************************************************
//解析接收到的数据
always @(posedge clk or negedge rst_n) begin
if (!rst_n) transfer_flag <= 1'b0;
else if (udp_rec_pkt_done && udp_rec_byte_num == 1'b1) begin
if (udp_rec_data[31:24] == START) //开始传输
transfer_flag <= 1'b1;
else if (udp_rec_data[31:24] == STOP) //停止传输
transfer_flag <= 1'b0;
end
end
endmodule
3.6 图像封装模块
`timescale 1ns / 1ps
//图像封装模块(添加帧头)
module img_data_pkt (
input rst_n, //复位信号,低电平有效
//图像相关信号
input cam_pclk, //像素时钟
input img_vsync, //帧同步信号
input img_data_en, //数据有效使能信号
input [15:0] img_data, //有效数据
input transfer_flag, //图像开始传输标志,0:开始传输 1:停止传输
//以太网相关信号
input eth_tx_clk, //以太网发送时钟
input udp_tx_req, //udp发送数据请求信号
input udp_tx_done, //udp发送数据完成信号
output reg udp_tx_start_en, //udp开始发送信号
output [31:0] udp_tx_data, //udp发送的数据
output reg [15:0] udp_tx_byte_num //udp单包发送的有效字节数
);
//parameter define
parameter CMOS_H_PIXEL = 16'd640; //图像水平方向分辨率
parameter CMOS_V_PIXEL = 16'd480; //图像垂直方向分辨率
//图像帧头,用于标志一帧数据的开始
parameter IMG_FRAME_HEAD = {32'hf0_5a_a5_0f};
reg img_vsync_d0; //帧有效信号打拍
reg img_vsync_d1; //帧有效信号打拍
reg neg_vsync_d0; //帧有效信号下降沿打拍
reg wr_sw; //用于位拼接的标志
reg [15:0] img_data_d0; //有效图像数据打拍
reg wr_fifo_en; //写fifo使能
reg [31:0] wr_fifo_data; //写fifo数据
reg img_vsync_txc_d0; //以太网发送时钟域下,帧有效信号打拍
reg img_vsync_txc_d1; //以太网发送时钟域下,帧有效信号打拍
reg tx_busy_flag; //发送忙信号标志
//wire define
wire pos_vsync; //帧有效信号上升沿
wire neg_vsync; //帧有效信号下降沿
wire neg_vsynt_txc; //以太网发送时钟域下,帧有效信号下降沿
wire [ 9:0] fifo_rdusedw; //当前FIFO缓存的个数
//*****************************************************
//** main code
//*****************************************************
//信号采沿
assign neg_vsync = img_vsync_d1 & (~img_vsync_d0);
assign pos_vsync = ~img_vsync_d1 & img_vsync_d0;
assign neg_vsynt_txc = ~img_vsync_txc_d1 & img_vsync_txc_d0;
//对img_vsync信号延时两个时钟周期,用于采沿
always @(posedge cam_pclk or negedge rst_n) begin
if (!rst_n) begin
img_vsync_d0 <= 1'b0;
img_vsync_d1 <= 1'b0;
end else begin
img_vsync_d0 <= img_vsync;
img_vsync_d1 <= img_vsync_d0;
end
end
//寄存neg_vsync信号
always @(posedge cam_pclk or negedge rst_n) begin
if (!rst_n) neg_vsync_d0 <= 1'b0;
else neg_vsync_d0 <= neg_vsync;
end
//对wr_sw和img_data_d0信号赋值,用于位拼接
always @(posedge cam_pclk or negedge rst_n) begin
if (!rst_n) begin
wr_sw <= 1'b0;
img_data_d0 <= 1'b0;
end else if (neg_vsync) wr_sw <= 1'b0;
else if (img_data_en) begin
wr_sw <= ~wr_sw;
img_data_d0 <= img_data;
end
end
//将帧头和图像数据写入FIFO
always @(posedge cam_pclk or negedge rst_n) begin
if (!rst_n) begin
wr_fifo_en <= 1'b0;
wr_fifo_data <= 1'b0;
end else begin
if (neg_vsync) begin
wr_fifo_en <= 1'b1;
wr_fifo_data <= IMG_FRAME_HEAD; //帧头
end else if (neg_vsync_d0) begin
wr_fifo_en <= 1'b1;
wr_fifo_data <= {CMOS_H_PIXEL, CMOS_V_PIXEL}; //水平和垂直方向分辨率
end else if (img_data_en && wr_sw) begin
wr_fifo_en <= 1'b1;
wr_fifo_data <= {img_data_d0, img_data}; //图像数据位拼接,16位转32位
end else begin
wr_fifo_en <= 1'b0;
wr_fifo_data <= 1'b0;
end
end
end
//以太网发送时钟域下,对img_vsync信号延时两个时钟周期,用于采沿
always @(posedge eth_tx_clk or negedge rst_n) begin
if (!rst_n) begin
img_vsync_txc_d0 <= 1'b0;
img_vsync_txc_d1 <= 1'b0;
end else begin
img_vsync_txc_d0 <= img_vsync;
img_vsync_txc_d1 <= img_vsync_txc_d0;
end
end
//控制以太网发送的字节数
always @(posedge eth_tx_clk or negedge rst_n) begin
if (!rst_n) udp_tx_byte_num <= 1'b0;
else if (neg_vsynt_txc) udp_tx_byte_num <= {CMOS_H_PIXEL, 1'b0} + 16'd8;
else if (udp_tx_done) udp_tx_byte_num <= {CMOS_H_PIXEL, 1'b0};
end
//控制以太网发送开始信号
always @(posedge eth_tx_clk or negedge rst_n) begin
if (!rst_n) begin
udp_tx_start_en <= 1'b0;
tx_busy_flag <= 1'b0;
end //上位机未发送"开始"命令时,以太网不发送图像数据
else if (transfer_flag == 1'b0) begin
udp_tx_start_en <= 1'b0;
tx_busy_flag <= 1'b0;
end else begin
udp_tx_start_en <= 1'b0;
//当FIFO中的个数满足需要发送的字节数时
if (tx_busy_flag == 1'b0 && fifo_rdusedw >= udp_tx_byte_num[15:2]) begin
udp_tx_start_en <= 1'b1; //开始控制发送一包数据
tx_busy_flag <= 1'b1;
end else if (udp_tx_done || neg_vsynt_txc) tx_busy_flag <= 1'b0;
end
end
//异步FIFO
async_fifo_1024x32b async_fifo_1024x32b_inst (
.rst (pos_vsync | (~transfer_flag)), // input wire rst
.wr_clk (cam_pclk), // input wire wr_clk
.rd_clk (eth_tx_clk), // input wire rd_clk
.din (wr_fifo_data), // input wire [31 : 0] din
.wr_en (wr_fifo_en), // input wire wr_en
.rd_en (udp_tx_req), // input wire rd_en
.dout (udp_tx_data), // output wire [31 : 0] dout
.full (), // output wire full
.empty (), // output wire empty
.rd_data_count(fifo_rdusedw), // output wire [9 : 0] rd_data_count
.wr_rst_busy (), // output wire wr_rst_busy
.rd_rst_busy () // output wire rd_rst_busy
);
endmodule
3.7 以太网通信UDP通信顶层模块
`timescale 1ns / 1ps
//以太网通信UDP通信顶层模块
module eth_top (
input sys_rst_n, //系统复位信号,低电平有效
//以太网RGMII接口
input eth_rxc, //RGMII接收数据时钟
input eth_rx_ctl, //RGMII输入数据有效信号
input [3:0] eth_rxd, //RGMII输入数据
output eth_txc, //RGMII发送数据时钟
output eth_tx_ctl, //RGMII输出数据有效信号
output [3:0] eth_txd, //RGMII输出数据
input gmii_tx_clk, //GMII发送时钟
input udp_tx_start_en, //以太网开始发送信号
input [31:0] tx_data, //以太网待发送数据
input [15:0] tx_byte_num, //以太网发送的有效字节数 单位:byte
output udp_tx_done, //UDP发送完成信号
output tx_req, //读数据请求信号
output gmii_rx_clk, //GMII接收时钟
output rec_pkt_done, //UDP单包数据接收完成信号
output rec_en, //UDP接收的数据使能信号
output [31:0] rec_data, //UDP接收的数据
output [15:0] rec_byte_num //UDP接收到的字节数
);
//parameter define
//开发板MAC地址 00-11-22-33-44-55
parameter BOARD_MAC = 48'h00_11_22_33_44_55;
//开发板IP地址 192.168.1.10
parameter BOARD_IP = {8'd192, 8'd168, 8'd1, 8'd10};
//目的MAC地址 ff_ff_ff_ff_ff_ff
parameter DES_MAC = 48'hff_ff_ff_ff_ff_ff;
//目的IP地址 192.168.1.102
parameter DES_IP = {8'd192, 8'd168, 8'd1, 8'd102};
//wire define
wire gmii_rx_dv; //GMII接收数据有效信号
wire [ 7:0] gmii_rxd; //GMII接收数据
wire gmii_tx_en; //GMII发送数据使能信号
wire [ 7:0] gmii_txd; //GMII发送数据
wire arp_gmii_tx_en; //ARP GMII输出数据有效信号
wire [ 7:0] arp_gmii_txd; //ARP GMII输出数据
wire arp_rx_done; //ARP接收完成信号
wire arp_rx_type; //ARP接收类型 0:请求 1:应答
wire [47:0] src_mac; //接收到目的MAC地址
wire [31:0] src_ip; //接收到目的IP地址
wire arp_tx_en; //ARP发送使能信号
wire arp_tx_type; //ARP发送类型 0:请求 1:应答
wire [47:0] des_mac; //发送的目标MAC地址
wire [31:0] des_ip; //发送的目标IP地址
wire arp_tx_done; //ARP发送完成信号
wire udp_gmii_tx_en; //UDP GMII输出数据有效信号
wire [ 7:0] udp_gmii_txd; //UDP GMII输出数据
//*****************************************************
//** main code
//*****************************************************
assign des_mac = src_mac;
assign des_ip = src_ip;
assign eth_txc = clk_125m_deg;
clk_wiz u_clk_wiz (
// Clock out ports
.clk_out1(clk_125m_deg), // output clk_out1
// Status and control signals
.reset (~sys_rst_n), // input reset
.locked (locked), // output locked
// Clock in ports
.clk_in1 (rgmii_txc) // input clk_in1
);
//GMII接口转RGMII接口
gmii_to_rgmii u_gmii_to_rgmii (
.gmii_rx_clk(gmii_rx_clk),
.gmii_rx_dv (gmii_rx_dv),
.gmii_rxd (gmii_rxd),
.gmii_tx_clk(gmii_tx_clk),
.gmii_tx_en (gmii_tx_en),
.gmii_txd (gmii_txd),
.rgmii_rxc (eth_rxc),
.rgmii_rx_ctl(eth_rx_ctl),
.rgmii_rxd (eth_rxd),
.rgmii_txc (rgmii_txc),
.rgmii_tx_ctl(eth_tx_ctl),
.rgmii_txd (eth_txd)
);
//ARP通信
arp #(
.BOARD_MAC(BOARD_MAC), //参数例化
.BOARD_IP (BOARD_IP),
.DES_MAC (DES_MAC),
.DES_IP (DES_IP)
) u_arp (
.rst_n(sys_rst_n),
.gmii_rx_clk(gmii_rx_clk),
.gmii_rx_dv (gmii_rx_dv),
.gmii_rxd (gmii_rxd),
.gmii_tx_clk(gmii_tx_clk),
.gmii_tx_en (arp_gmii_tx_en),
.gmii_txd (arp_gmii_txd),
.arp_rx_done(arp_rx_done),
.arp_rx_type(arp_rx_type),
.src_mac (src_mac),
.src_ip (src_ip),
.arp_tx_en (arp_tx_en),
.arp_tx_type(arp_tx_type),
.des_mac (des_mac),
.des_ip (des_ip),
.tx_done (arp_tx_done)
);
//UDP通信
udp #(
.BOARD_MAC(BOARD_MAC), //参数例化
.BOARD_IP (BOARD_IP),
.DES_MAC (DES_MAC),
.DES_IP (DES_IP)
) u_udp (
.rst_n(sys_rst_n),
.gmii_rx_clk(gmii_rx_clk),
.gmii_rx_dv (gmii_rx_dv),
.gmii_rxd (gmii_rxd),
.gmii_tx_clk(gmii_tx_clk),
.gmii_tx_en (udp_gmii_tx_en),
.gmii_txd (udp_gmii_txd),
.rec_pkt_done(rec_pkt_done),
.rec_en (rec_en),
.rec_data (rec_data),
.rec_byte_num(rec_byte_num),
.tx_start_en (udp_tx_start_en),
.tx_data (tx_data),
.tx_byte_num (tx_byte_num),
.des_mac (des_mac),
.des_ip (des_ip),
.tx_done (udp_tx_done),
.tx_req (tx_req)
);
//以太网控制模块
eth_ctrl u_eth_ctrl (
.clk (gmii_rx_clk),
.rst_n(sys_rst_n),
.arp_rx_done (arp_rx_done),
.arp_rx_type (arp_rx_type),
.arp_tx_en (arp_tx_en),
.arp_tx_type (arp_tx_type),
.arp_tx_done (arp_tx_done),
.arp_gmii_tx_en(arp_gmii_tx_en),
.arp_gmii_txd (arp_gmii_txd),
.udp_gmii_tx_en(udp_gmii_tx_en),
.udp_gmii_txd (udp_gmii_txd),
.gmii_tx_en(gmii_tx_en),
.gmii_txd (gmii_txd)
);
endmodule
文章来源:https://www.toymoban.com/news/detail-847060.html
文章来源地址https://www.toymoban.com/news/detail-847060.html
3.8 GMII接口转RGMII接口模块
`timescale 1ns / 1ps
//GMII接口转RGMII接口模块
module gmii_to_rgmii (
//以太网GMII接口
output gmii_rx_clk, //GMII接收时钟
output gmii_rx_dv, //GMII接收数据有效信号
output [7:0] gmii_rxd, //GMII接收数据
input gmii_tx_clk, //GMII发送时钟
input gmii_tx_en, //GMII发送数据使能信号
input [7:0] gmii_txd, //GMII发送数据
//以太网RGMII接口
input rgmii_rxc, //RGMII接收时钟
input rgmii_rx_ctl, //RGMII接收数据控制信号
input [3:0] rgmii_rxd, //RGMII接收数据
output rgmii_txc, //RGMII发送时钟
output rgmii_tx_ctl, //RGMII发送数据控制信号
output [3:0] rgmii_txd //RGMII发送数据
);
//*****************************************************
//** main code
//*****************************************************
assign gmii_tx_clk = gmii_rx_clk;
//RGMII接收
rgmii_rx u_rgmii_rx (
.gmii_rx_clk (gmii_rx_clk),
.rgmii_rxc (rgmii_rxc),
.rgmii_rx_ctl(rgmii_rx_ctl),
.rgmii_rxd (rgmii_rxd),
.gmii_rx_dv(gmii_rx_dv),
.gmii_rxd (gmii_rxd)
);
//RGMII发送
rgmii_tx u_rgmii_tx (
.gmii_tx_clk(gmii_tx_clk),
.gmii_tx_en (gmii_tx_en),
.gmii_txd (gmii_txd),
.rgmii_txc (rgmii_txc),
.rgmii_tx_ctl(rgmii_tx_ctl),
.rgmii_txd (rgmii_txd)
);
endmodule
3.8.1 RGMII接收模块
`timescale 1ns / 1ps
//RGMII接收模块
module rgmii_rx (
//以太网RGMII接口
input rgmii_rxc, //RGMII接收时钟
input rgmii_rx_ctl, //RGMII接收数据控制信号
input [3:0] rgmii_rxd, //RGMII接收数据
//以太网GMII接口
output gmii_rx_clk, //GMII接收时钟
output gmii_rx_dv, //GMII接收数据有效信号
output [7:0] gmii_rxd //GMII接收数据
);
//wire define
wire rgmii_rxc_bufg; //全局时钟缓存
wire rgmii_rxc_bufio; //全局时钟IO缓存
wire [1:0] gmii_rxdv_t; //两位GMII接收有效信号
//*****************************************************
//** main code
//*****************************************************
assign gmii_rx_clk = rgmii_rxc_bufg;
assign gmii_rx_dv = gmii_rxdv_t[0] & gmii_rxdv_t[1];
//全局时钟缓存
BUFG BUFG_inst (
.I(rgmii_rxc), // 1-bit input: Clock input
.O(rgmii_rxc_bufg) // 1-bit output: Clock output
);
//全局时钟IO缓存
BUFIO BUFIO_inst (
.I(rgmii_rxc), // 1-bit input: Clock input
.O(rgmii_rxc_bufio) // 1-bit output: Clock output
);
//将输入的上下边沿DDR信号,转换成两位单边沿SDR信号
IDDRE1 #(
.DDR_CLK_EDGE ("SAME_EDGE_PIPELINED"),// IDDRE1 mode (OPPOSITE_EDGE, SAME_EDGE, SAME_EDGE_PIPELINED)
.IS_CB_INVERTED(1'b0), // Optional inversion for CB
.IS_C_INVERTED(1'b0) // Optional inversion for C
) IDDRE1_inst (
.Q1(gmii_rxdv_t[0]), // 1-bit output: Registered parallel output 1
.Q2(gmii_rxdv_t[1]), // 1-bit output: Registered parallel output 2
.C (rgmii_rxc_bufio), // 1-bit input: High-speed clock
.CB(~rgmii_rxc_bufio), // 1-bit input: Inversion of High-speed clock C
.D (rgmii_rx_ctl), // 1-bit input: Serial Data Input
.R (1'b0) // 1-bit input: Active High Async Reset
);
genvar i;
generate
for (i = 0; i < 4; i = i + 1) begin : rxdata_bus
IDDRE1 #(
.DDR_CLK_EDGE ("SAME_EDGE_PIPELINED"), // IDDRE1 mode (OPPOSITE_EDGE, SAME_EDGE, SAME_EDGE_PIPELINED)
.IS_CB_INVERTED(1'b0), // Optional inversion for CB
.IS_C_INVERTED(1'b0) // Optional inversion for C
) IDDRE1_inst (
.Q1(gmii_rxd[i]), // 1-bit output: Registered parallel output 1
.Q2(gmii_rxd[4+i]), // 1-bit output: Registered parallel output 2
.C (rgmii_rxc_bufio), // 1-bit input: High-speed clock
.CB(~rgmii_rxc_bufio), // 1-bit input: Inversion of High-speed clock C
.D (rgmii_rxd[i]), // 1-bit input: Serial Data Input
.R (1'b0) // 1-bit input: Active High Async Reset
);
end
endgenerate
endmodule
3.8.2 RGMII发送模块
`timescale 1ns / 1ps
//RGMII发送模块
module rgmii_tx (
//GMII发送端口
input gmii_tx_clk, //GMII发送时钟
input gmii_tx_en, //GMII输出数据有效信号
input [7:0] gmii_txd, //GMII输出数据
//RGMII发送端口
output rgmii_txc, //RGMII发送数据时钟
output rgmii_tx_ctl, //RGMII输出数据有效信号
output [3:0] rgmii_txd //RGMII输出数据
);
//*****************************************************
//** main code
//*****************************************************
assign rgmii_txc = gmii_tx_clk;
//输出双沿采样寄存器 (rgmii_tx_ctl)
ODDRE1 #(
.IS_C_INVERTED(1'b0), // Optional inversion for C
.IS_D1_INVERTED(1'b0), // Unsupported, do not use
.IS_D2_INVERTED(1'b0), // Unsupported, do not use
.SIM_DEVICE ("ULTRASCALE"), // Set the device version (ULTRASCALE, ULTRASCALE_PLUS, ULTRASCALE_PLUS_ES1,ULTRASCALE_PLUS_ES2)
.SRVAL(1'b0) // Initializes the ODDRE1 Flip-Flops to the specified value (1'b0, 1'b1)
) ODDRE1_tx_ctl (
.Q (rgmii_tx_ctl), // 1-bit output: Data output to IOB
.C (gmii_tx_clk), // 1-bit input: High-speed clock input
.D1(gmii_tx_en), // 1-bit input: Parallel data input 1
.D2(gmii_tx_en), // 1-bit input: Parallel data input 2
.SR(1'b0) // 1-bit input: Active High Async Reset
);
genvar i;
generate
for (i = 0; i < 4; i = i + 1) begin : txdata_bus
ODDRE1 #(
.IS_C_INVERTED(1'b0), // Optional inversion for C
.IS_D1_INVERTED(1'b0), // Unsupported, do not use
.IS_D2_INVERTED(1'b0), // Unsupported, do not use
.SIM_DEVICE("ULTRASCALE"), // Set the device version (ULTRASCALE, ULTRASCALE_PLUS, ULTRASCALE_PLUS_ES1,ULTRASCALE_PLUS_ES2)
.SRVAL(1'b0) // Initializes the ODDRE1 Flip-Flops to the specified value (1'b0, 1'b1)
) ODDRE1_inst (
.Q (rgmii_txd[i]), // 1-bit output: Data output to IOB
.C (gmii_tx_clk), // 1-bit input: High-speed clock input
.D1(gmii_txd[i]), // 1-bit input: Parallel data input 1
.D2(gmii_txd[4+i]), // 1-bit input: Parallel data input 2
.SR(1'b0) // 1-bit input: Active High Async Reset
);
end
endgenerate
endmodule
3.9 arp模块
`timescale 1ns / 1ps
//arp模块
module arp (
input rst_n, //复位信号,低电平有效
//GMII接口
input gmii_rx_clk, //GMII接收数据时钟
input gmii_rx_dv, //GMII输入数据有效信号
input [7:0] gmii_rxd, //GMII输入数据
input gmii_tx_clk, //GMII发送数据时钟
output gmii_tx_en, //GMII输出数据有效信号
output [7:0] gmii_txd, //GMII输出数据
//用户接口
output arp_rx_done, //ARP接收完成信号
output arp_rx_type, //ARP接收类型 0:请求 1:应答
output [47:0] src_mac, //接收到目的MAC地址
output [31:0] src_ip, //接收到目的IP地址
input arp_tx_en, //ARP发送使能信号
input arp_tx_type, //ARP发送类型 0:请求 1:应答
input [47:0] des_mac, //发送的目标MAC地址
input [31:0] des_ip, //发送的目标IP地址
output tx_done //以太网发送完成信号
);
//parameter define
//开发板MAC地址 00-11-22-33-44-55
parameter BOARD_MAC = 48'h00_11_22_33_44_55;
//开发板IP地址 192.168.1.10
parameter BOARD_IP = {8'd192, 8'd168, 8'd1, 8'd10};
//目的MAC地址 ff_ff_ff_ff_ff_ff
parameter DES_MAC = 48'hff_ff_ff_ff_ff_ff;
//目的IP地址 192.168.1.102
parameter DES_IP = {8'd192, 8'd168, 8'd1, 8'd102};
//wire define
wire crc_en; //CRC开始校验使能
wire crc_clr; //CRC数据复位信号
wire [ 7:0] crc_d8; //输入待校验8位数据
wire [31:0] crc_data; //CRC校验数据
wire [31:0] crc_next; //CRC下次校验完成数据
//*****************************************************
//** main code
//*****************************************************
assign crc_d8 = gmii_txd;
//ARP接收模块
arp_rx #(
.BOARD_MAC(BOARD_MAC), //参数例化
.BOARD_IP (BOARD_IP)
) u_arp_rx (
.clk (gmii_rx_clk),
.rst_n(rst_n),
.gmii_rx_dv (gmii_rx_dv),
.gmii_rxd (gmii_rxd),
.arp_rx_done(arp_rx_done),
.arp_rx_type(arp_rx_type),
.src_mac (src_mac),
.src_ip (src_ip)
);
//ARP发送模块
arp_tx #(
.BOARD_MAC(BOARD_MAC), //参数例化
.BOARD_IP (BOARD_IP),
.DES_MAC (DES_MAC),
.DES_IP (DES_IP)
) u_arp_tx (
.clk (gmii_tx_clk),
.rst_n(rst_n),
.arp_tx_en (arp_tx_en),
.arp_tx_type(arp_tx_type),
.des_mac (des_mac),
.des_ip (des_ip),
.crc_data (crc_data),
.crc_next (crc_next[31:24]),
.tx_done (tx_done),
.gmii_tx_en (gmii_tx_en),
.gmii_txd (gmii_txd),
.crc_en (crc_en),
.crc_clr (crc_clr)
);
//以太网发送CRC校验模块
crc32_d8 u_crc32_d8 (
.clk (gmii_tx_clk),
.rst_n (rst_n),
.data (crc_d8),
.crc_en (crc_en),
.crc_clr (crc_clr),
.crc_data(crc_data),
.crc_next(crc_next)
);
endmodule
3.9.1 arp接收模块
`timescale 1ns / 1ps
//arp接收模块
module arp_rx #(
//开发板MAC地址 00-11-22-33-44-55
parameter BOARD_MAC = 48'h00_11_22_33_44_55,
//开发板IP地址 192.168.1.10
parameter BOARD_IP = {8'd192, 8'd168, 8'd1, 8'd10}
) (
input clk, //时钟信号
input rst_n, //复位信号,低电平有效
input gmii_rx_dv, //GMII输入数据有效信号
input [ 7:0] gmii_rxd, //GMII输入数据
output reg arp_rx_done, //ARP接收完成信号
output reg arp_rx_type, //ARP接收类型 0:请求 1:应答
output reg [47:0] src_mac, //接收到的源MAC地址
output reg [31:0] src_ip //接收到的源IP地址
);
//parameter define
localparam st_idle = 5'b0_0001; //初始状态,等待接收前导码
localparam st_preamble = 5'b0_0010; //接收前导码状态
localparam st_eth_head = 5'b0_0100; //接收以太网帧头
localparam st_arp_data = 5'b0_1000; //接收ARP数据
localparam st_rx_end = 5'b1_0000; //接收结束
localparam ETH_TPYE = 16'h0806; //以太网帧类型 ARP
//reg define
reg [ 4:0] cur_state;
reg [ 4:0] next_state;
reg skip_en; //控制状态跳转使能信号
reg error_en; //解析错误使能信号
reg [ 4:0] cnt; //解析数据计数器
reg [47:0] des_mac_t; //接收到的目的MAC地址
reg [31:0] des_ip_t; //接收到的目的IP地址
reg [47:0] src_mac_t; //接收到的源MAC地址
reg [31:0] src_ip_t; //接收到的源IP地址
reg [15:0] eth_type; //以太网类型
reg [15:0] op_data; //操作码
//*****************************************************
//** main code
//*****************************************************
//(三段式状态机)同步时序描述状态转移
always @(posedge clk or negedge rst_n) begin
if (!rst_n) cur_state <= st_idle;
else cur_state <= next_state;
end
//组合逻辑判断状态转移条件
always @(*) begin
next_state = st_idle;
case (cur_state)
st_idle: begin //等待接收前导码
if (skip_en) next_state = st_preamble;
else next_state = st_idle;
end
st_preamble: begin //接收前导码
if (skip_en) next_state = st_eth_head;
else if (error_en) next_state = st_rx_end;
else next_state = st_preamble;
end
st_eth_head: begin //接收以太网帧头
if (skip_en) next_state = st_arp_data;
else if (error_en) next_state = st_rx_end;
else next_state = st_eth_head;
end
st_arp_data: begin //接收ARP数据
if (skip_en) next_state = st_rx_end;
else if (error_en) next_state = st_rx_end;
else next_state = st_arp_data;
end
st_rx_end: begin //接收结束
if (skip_en) next_state = st_idle;
else next_state = st_rx_end;
end
default: next_state = st_idle;
endcase
end
//时序电路描述状态输出,解析以太网数据
always @(posedge clk or negedge rst_n) begin
if (!rst_n) begin
skip_en <= 1'b0;
error_en <= 1'b0;
cnt <= 5'd0;
des_mac_t <= 48'd0;
des_ip_t <= 32'd0;
src_mac_t <= 48'd0;
src_ip_t <= 32'd0;
eth_type <= 16'd0;
op_data <= 16'd0;
arp_rx_done <= 1'b0;
arp_rx_type <= 1'b0;
src_mac <= 48'd0;
src_ip <= 32'd0;
end else begin
skip_en <= 1'b0;
error_en <= 1'b0;
arp_rx_done <= 1'b0;
case (next_state)
st_idle: begin //检测到第一个8'h55
if ((gmii_rx_dv == 1'b1) && (gmii_rxd == 8'h55)) skip_en <= 1'b1;
end
st_preamble: begin
if (gmii_rx_dv) begin //解析前导码
cnt <= cnt + 5'd1;
if ((cnt < 5'd6) && (gmii_rxd != 8'h55)) //7个8'h55
error_en <= 1'b1;
else if (cnt == 5'd6) begin
cnt <= 5'd0;
if (gmii_rxd == 8'hd5) //1个8'hd5
skip_en <= 1'b1;
else error_en <= 1'b1;
end
end
end
st_eth_head: begin
if (gmii_rx_dv) begin
cnt <= cnt + 5'b1;
if (cnt < 5'd6) des_mac_t <= {des_mac_t[39:0], gmii_rxd};
else if (cnt == 5'd6) begin
//判断MAC地址是否为开发板MAC地址或者公共地址
if ((des_mac_t != BOARD_MAC) && (des_mac_t != 48'hff_ff_ff_ff_ff_ff))
error_en <= 1'b1;
end else if (cnt == 5'd12) eth_type[15:8] <= gmii_rxd; //以太网协议类型
else if (cnt == 5'd13) begin
eth_type[7:0] <= gmii_rxd;
cnt <= 5'd0;
if (eth_type[15:8] == ETH_TPYE[15:8] //判断是否为ARP协议
&& gmii_rxd == ETH_TPYE[7:0])
skip_en <= 1'b1;
else error_en <= 1'b1;
end
end
end
st_arp_data: begin
if (gmii_rx_dv) begin
cnt <= cnt + 5'd1;
if (cnt == 5'd6) op_data[15:8] <= gmii_rxd; //操作码
else if (cnt == 5'd7) op_data[7:0] <= gmii_rxd;
else if (cnt >= 5'd8 && cnt < 5'd14) //源MAC地址
src_mac_t <= {src_mac_t[39:0], gmii_rxd};
else if (cnt >= 5'd14 && cnt < 5'd18) //源IP地址
src_ip_t <= {src_ip_t[23:0], gmii_rxd};
else if (cnt >= 5'd24 && cnt < 5'd28) //目标IP地址
des_ip_t <= {des_ip_t[23:0], gmii_rxd};
else if (cnt == 5'd28) begin
cnt <= 5'd0;
if (des_ip_t == BOARD_IP) begin //判断目的IP地址和操作码
if ((op_data == 16'd1) || (op_data == 16'd2)) begin
skip_en <= 1'b1;
arp_rx_done <= 1'b1;
src_mac <= src_mac_t;
src_ip <= src_ip_t;
src_mac_t <= 48'd0;
src_ip_t <= 32'd0;
des_mac_t <= 48'd0;
des_ip_t <= 32'd0;
if (op_data == 16'd1) arp_rx_type <= 1'b0; //ARP请求
else arp_rx_type <= 1'b1; //ARP应答
end else error_en <= 1'b1;
end else error_en <= 1'b1;
end
end
end
st_rx_end: begin
cnt <= 5'd0;
//单包数据接收完成
if (gmii_rx_dv == 1'b0 && skip_en == 1'b0) skip_en <= 1'b1;
end
default: ;
endcase
end
end
endmodule
3.9.2 arp发送模块
`timescale 1ns / 1ps
//arp发送模块
module arp_tx (
input clk, //时钟信号
input rst_n, //复位信号,低电平有效
input arp_tx_en, //ARP发送使能信号
input arp_tx_type, //ARP发送类型 0:请求 1:应答
input [47:0] des_mac, //发送的目标MAC地址
input [31:0] des_ip, //发送的目标IP地址
input [31:0] crc_data, //CRC校验数据
input [ 7:0] crc_next, //CRC下次校验完成数据
output reg tx_done, //以太网发送完成信号
output reg gmii_tx_en, //GMII输出数据有效信号
output reg [ 7:0] gmii_txd, //GMII输出数据
output reg crc_en, //CRC开始校验使能
output reg crc_clr //CRC数据复位信号
);
//parameter define
//开发板MAC地址 00-11-22-33-44-55
parameter BOARD_MAC = 48'h00_11_22_33_44_55;
//开发板IP地址 192.168.1.10
parameter BOARD_IP = {8'd192, 8'd168, 8'd1, 8'd10};
//目的MAC地址 ff_ff_ff_ff_ff_ff
parameter DES_MAC = 48'hff_ff_ff_ff_ff_ff;
//目的IP地址 192.168.1.102
parameter DES_IP = {8'd192, 8'd168, 8'd1, 8'd102};
localparam st_idle = 5'b0_0001; //初始状态,等待开始发送信号
localparam st_preamble = 5'b0_0010; //发送前导码+帧起始界定符
localparam st_eth_head = 5'b0_0100; //发送以太网帧头
localparam st_arp_data = 5'b0_1000; //
localparam st_crc = 5'b1_0000; //发送CRC校验值
localparam ETH_TYPE = 16'h0806; //以太网帧类型 ARP协议
localparam HD_TYPE = 16'h0001; //硬件类型 以太网
localparam PROTOCOL_TYPE = 16'h0800; //上层协议为IP协议
//以太网数据最小为46个字节,不足部分填充数据
localparam MIN_DATA_NUM = 16'd46;
//reg define
reg [4:0] cur_state;
reg [4:0] next_state;
reg [7:0] preamble [ 7:0]; //前导码+SFD
reg [7:0] eth_head [13:0]; //以太网首部
reg [7:0] arp_data [27:0]; //ARP数据
reg tx_en_d0; //arp_tx_en信号延时
reg tx_en_d1;
reg skip_en; //控制状态跳转使能信号
reg [5:0] cnt;
reg [4:0] data_cnt; //发送数据个数计数器
reg tx_done_t;
//wire define
wire pos_tx_en; //arp_tx_en信号上升沿
//*****************************************************
//** main code
//*****************************************************
assign pos_tx_en = (~tx_en_d1) & tx_en_d0;
//对arp_tx_en信号延时打拍两次,用于采arp_tx_en的上升沿
always @(posedge clk or negedge rst_n) begin
if (!rst_n) begin
tx_en_d0 <= 1'b0;
tx_en_d1 <= 1'b0;
end else begin
tx_en_d0 <= arp_tx_en;
tx_en_d1 <= tx_en_d0;
end
end
//(三段式状态机)同步时序描述状态转移
always @(posedge clk or negedge rst_n) begin
if (!rst_n) cur_state <= st_idle;
else cur_state <= next_state;
end
//组合逻辑判断状态转移条件
always @(*) begin
next_state = st_idle;
case (cur_state)
st_idle: begin //空闲状态
if (skip_en) next_state = st_preamble;
else next_state = st_idle;
end
st_preamble: begin //发送前导码+帧起始界定符
if (skip_en) next_state = st_eth_head;
else next_state = st_preamble;
end
st_eth_head: begin //发送以太网首部
if (skip_en) next_state = st_arp_data;
else next_state = st_eth_head;
end
st_arp_data: begin //发送ARP数据
if (skip_en) next_state = st_crc;
else next_state = st_arp_data;
end
st_crc: begin //发送CRC校验值
if (skip_en) next_state = st_idle;
else next_state = st_crc;
end
default: next_state = st_idle;
endcase
end
//时序电路描述状态输出,发送以太网数据
always @(posedge clk or negedge rst_n) begin
if (!rst_n) begin
skip_en <= 1'b0;
cnt <= 6'd0;
data_cnt <= 5'd0;
crc_en <= 1'b0;
gmii_tx_en <= 1'b0;
gmii_txd <= 8'd0;
tx_done_t <= 1'b0;
//初始化数组
//前导码 7个8'h55 + 1个8'hd5
preamble[0] <= 8'h55;
preamble[1] <= 8'h55;
preamble[2] <= 8'h55;
preamble[3] <= 8'h55;
preamble[4] <= 8'h55;
preamble[5] <= 8'h55;
preamble[6] <= 8'h55;
preamble[7] <= 8'hd5;
//以太网帧头
eth_head[0] <= DES_MAC[47:40]; //目的MAC地址
eth_head[1] <= DES_MAC[39:32];
eth_head[2] <= DES_MAC[31:24];
eth_head[3] <= DES_MAC[23:16];
eth_head[4] <= DES_MAC[15:8];
eth_head[5] <= DES_MAC[7:0];
eth_head[6] <= BOARD_MAC[47:40]; //源MAC地址
eth_head[7] <= BOARD_MAC[39:32];
eth_head[8] <= BOARD_MAC[31:24];
eth_head[9] <= BOARD_MAC[23:16];
eth_head[10] <= BOARD_MAC[15:8];
eth_head[11] <= BOARD_MAC[7:0];
eth_head[12] <= ETH_TYPE[15:8]; //以太网帧类型
eth_head[13] <= ETH_TYPE[7:0];
//ARP数据
arp_data[0] <= HD_TYPE[15:8]; //硬件类型
arp_data[1] <= HD_TYPE[7:0];
arp_data[2] <= PROTOCOL_TYPE[15:8]; //上层协议类型
arp_data[3] <= PROTOCOL_TYPE[7:0];
arp_data[4] <= 8'h06; //硬件地址长度,6
arp_data[5] <= 8'h04; //协议地址长度,4
arp_data[6] <= 8'h00; //OP,操作码 8'h01:ARP请求 8'h02:ARP应答
arp_data[7] <= 8'h01;
arp_data[8] <= BOARD_MAC[47:40]; //发送端(源)MAC地址
arp_data[9] <= BOARD_MAC[39:32];
arp_data[10] <= BOARD_MAC[31:24];
arp_data[11] <= BOARD_MAC[23:16];
arp_data[12] <= BOARD_MAC[15:8];
arp_data[13] <= BOARD_MAC[7:0];
arp_data[14] <= BOARD_IP[31:24]; //发送端(源)IP地址
arp_data[15] <= BOARD_IP[23:16];
arp_data[16] <= BOARD_IP[15:8];
arp_data[17] <= BOARD_IP[7:0];
arp_data[18] <= DES_MAC[47:40]; //接收端(目的)MAC地址
arp_data[19] <= DES_MAC[39:32];
arp_data[20] <= DES_MAC[31:24];
arp_data[21] <= DES_MAC[23:16];
arp_data[22] <= DES_MAC[15:8];
arp_data[23] <= DES_MAC[7:0];
arp_data[24] <= DES_IP[31:24]; //接收端(目的)IP地址
arp_data[25] <= DES_IP[23:16];
arp_data[26] <= DES_IP[15:8];
arp_data[27] <= DES_IP[7:0];
end else begin
skip_en <= 1'b0;
crc_en <= 1'b0;
gmii_tx_en <= 1'b0;
tx_done_t <= 1'b0;
case (next_state)
st_idle: begin
if (pos_tx_en) begin
skip_en <= 1'b1;
//如果目标MAC地址和IP地址已经更新,则发送正确的地址
if ((des_mac != 48'b0) || (des_ip != 32'd0)) begin
eth_head[0] <= des_mac[47:40];
eth_head[1] <= des_mac[39:32];
eth_head[2] <= des_mac[31:24];
eth_head[3] <= des_mac[23:16];
eth_head[4] <= des_mac[15:8];
eth_head[5] <= des_mac[7:0];
arp_data[18] <= des_mac[47:40];
arp_data[19] <= des_mac[39:32];
arp_data[20] <= des_mac[31:24];
arp_data[21] <= des_mac[23:16];
arp_data[22] <= des_mac[15:8];
arp_data[23] <= des_mac[7:0];
arp_data[24] <= des_ip[31:24];
arp_data[25] <= des_ip[23:16];
arp_data[26] <= des_ip[15:8];
arp_data[27] <= des_ip[7:0];
end
if (arp_tx_type == 1'b0) arp_data[7] <= 8'h01; //ARP请求
else arp_data[7] <= 8'h02; //ARP应答
end
end
st_preamble: begin //发送前导码+帧起始界定符
gmii_tx_en <= 1'b1;
gmii_txd <= preamble[cnt];
if (cnt == 6'd7) begin
skip_en <= 1'b1;
cnt <= 1'b0;
end else cnt <= cnt + 1'b1;
end
st_eth_head: begin //发送以太网首部
gmii_tx_en <= 1'b1;
crc_en <= 1'b1;
gmii_txd <= eth_head[cnt];
if (cnt == 6'd13) begin
skip_en <= 1'b1;
cnt <= 1'b0;
end else cnt <= cnt + 1'b1;
end
st_arp_data: begin //发送ARP数据
crc_en <= 1'b1;
gmii_tx_en <= 1'b1;
//至少发送46个字节
if (cnt == MIN_DATA_NUM - 1'b1) begin
skip_en <= 1'b1;
cnt <= 1'b0;
data_cnt <= 1'b0;
end else cnt <= cnt + 1'b1;
if (data_cnt <= 6'd27) begin
data_cnt <= data_cnt + 1'b1;
gmii_txd <= arp_data[data_cnt];
end else gmii_txd <= 8'd0; //Padding,填充0
end
st_crc: begin //发送CRC校验值
gmii_tx_en <= 1'b1;
cnt <= cnt + 1'b1;
if (cnt == 6'd0)
gmii_txd <= {
~crc_next[0],
~crc_next[1],
~crc_next[2],
~crc_next[3],
~crc_next[4],
~crc_next[5],
~crc_next[6],
~crc_next[7]
};
else if (cnt == 6'd1)
gmii_txd <= {
~crc_data[16],
~crc_data[17],
~crc_data[18],
~crc_data[19],
~crc_data[20],
~crc_data[21],
~crc_data[22],
~crc_data[23]
};
else if (cnt == 6'd2) begin
gmii_txd <= {
~crc_data[8],
~crc_data[9],
~crc_data[10],
~crc_data[11],
~crc_data[12],
~crc_data[13],
~crc_data[14],
~crc_data[15]
};
end else if (cnt == 6'd3) begin
gmii_txd <= {
~crc_data[0],
~crc_data[1],
~crc_data[2],
~crc_data[3],
~crc_data[4],
~crc_data[5],
~crc_data[6],
~crc_data[7]
};
tx_done_t <= 1'b1;
skip_en <= 1'b1;
cnt <= 1'b0;
end
end
default: ;
endcase
end
end
//发送完成信号及crc值复位信号
always @(posedge clk or negedge rst_n) begin
if (!rst_n) begin
tx_done <= 1'b0;
crc_clr <= 1'b0;
end else begin
tx_done <= tx_done_t;
crc_clr <= tx_done_t;
end
end
endmodule
3.9.3 CRC32校验模块
`timescale 1ns / 1ps
//CRC32校验模块
module crc32_d8 (
input clk, //时钟信号
input rst_n, //复位信号,低电平有效
input [ 7:0] data, //输入待校验8位数据
input crc_en, //crc使能,开始校验标志
input crc_clr, //crc数据复位信号
output reg [31:0] crc_data, //CRC校验数据
output [31:0] crc_next //CRC下次校验完成数据
);
//*****************************************************
//** main code
//*****************************************************
//输入待校验8位数据,需要先将高低位互换
wire [7:0] data_t;
assign data_t = {data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]};
//CRC32的生成多项式为:G(x)= x^32 + x^26 + x^23 + x^22 + x^16 + x^12 + x^11
//+ x^10 + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + 1
assign crc_next[0] = crc_data[24] ^ crc_data[30] ^ data_t[0] ^ data_t[6];
assign crc_next[1] = crc_data[24] ^ crc_data[25] ^ crc_data[30] ^ crc_data[31]
^ data_t[0] ^ data_t[1] ^ data_t[6] ^ data_t[7];
assign crc_next[2] = crc_data[24] ^ crc_data[25] ^ crc_data[26] ^ crc_data[30]
^ crc_data[31] ^ data_t[0] ^ data_t[1] ^ data_t[2] ^ data_t[6]
^ data_t[7];
assign crc_next[3] = crc_data[25] ^ crc_data[26] ^ crc_data[27] ^ crc_data[31]
^ data_t[1] ^ data_t[2] ^ data_t[3] ^ data_t[7];
assign crc_next[4] = crc_data[24] ^ crc_data[26] ^ crc_data[27] ^ crc_data[28]
^ crc_data[30] ^ data_t[0] ^ data_t[2] ^ data_t[3] ^ data_t[4]
^ data_t[6];
assign crc_next[5] = crc_data[24] ^ crc_data[25] ^ crc_data[27] ^ crc_data[28]
^ crc_data[29] ^ crc_data[30] ^ crc_data[31] ^ data_t[0]
^ data_t[1] ^ data_t[3] ^ data_t[4] ^ data_t[5] ^ data_t[6]
^ data_t[7];
assign crc_next[6] = crc_data[25] ^ crc_data[26] ^ crc_data[28] ^ crc_data[29]
^ crc_data[30] ^ crc_data[31] ^ data_t[1] ^ data_t[2] ^ data_t[4]
^ data_t[5] ^ data_t[6] ^ data_t[7];
assign crc_next[7] = crc_data[24] ^ crc_data[26] ^ crc_data[27] ^ crc_data[29]
^ crc_data[31] ^ data_t[0] ^ data_t[2] ^ data_t[3] ^ data_t[5]
^ data_t[7];
assign crc_next[8] = crc_data[0] ^ crc_data[24] ^ crc_data[25] ^ crc_data[27]
^ crc_data[28] ^ data_t[0] ^ data_t[1] ^ data_t[3] ^ data_t[4];
assign crc_next[9] = crc_data[1] ^ crc_data[25] ^ crc_data[26] ^ crc_data[28]
^ crc_data[29] ^ data_t[1] ^ data_t[2] ^ data_t[4] ^ data_t[5];
assign crc_next[10] = crc_data[2] ^ crc_data[24] ^ crc_data[26] ^ crc_data[27]
^ crc_data[29] ^ data_t[0] ^ data_t[2] ^ data_t[3] ^ data_t[5];
assign crc_next[11] = crc_data[3] ^ crc_data[24] ^ crc_data[25] ^ crc_data[27]
^ crc_data[28] ^ data_t[0] ^ data_t[1] ^ data_t[3] ^ data_t[4];
assign crc_next[12] = crc_data[4] ^ crc_data[24] ^ crc_data[25] ^ crc_data[26]
^ crc_data[28] ^ crc_data[29] ^ crc_data[30] ^ data_t[0]
^ data_t[1] ^ data_t[2] ^ data_t[4] ^ data_t[5] ^ data_t[6];
assign crc_next[13] = crc_data[5] ^ crc_data[25] ^ crc_data[26] ^ crc_data[27]
^ crc_data[29] ^ crc_data[30] ^ crc_data[31] ^ data_t[1]
^ data_t[2] ^ data_t[3] ^ data_t[5] ^ data_t[6] ^ data_t[7];
assign crc_next[14] = crc_data[6] ^ crc_data[26] ^ crc_data[27] ^ crc_data[28]
^ crc_data[30] ^ crc_data[31] ^ data_t[2] ^ data_t[3] ^ data_t[4]
^ data_t[6] ^ data_t[7];
assign crc_next[15] = crc_data[7] ^ crc_data[27] ^ crc_data[28] ^ crc_data[29]
^ crc_data[31] ^ data_t[3] ^ data_t[4] ^ data_t[5] ^ data_t[7];
assign crc_next[16] = crc_data[8] ^ crc_data[24] ^ crc_data[28] ^ crc_data[29]
^ data_t[0] ^ data_t[4] ^ data_t[5];
assign crc_next[17] = crc_data[9] ^ crc_data[25] ^ crc_data[29] ^ crc_data[30]
^ data_t[1] ^ data_t[5] ^ data_t[6];
assign crc_next[18] = crc_data[10] ^ crc_data[26] ^ crc_data[30] ^ crc_data[31]
^ data_t[2] ^ data_t[6] ^ data_t[7];
assign crc_next[19] = crc_data[11] ^ crc_data[27] ^ crc_data[31] ^ data_t[3] ^ data_t[7];
assign crc_next[20] = crc_data[12] ^ crc_data[28] ^ data_t[4];
assign crc_next[21] = crc_data[13] ^ crc_data[29] ^ data_t[5];
assign crc_next[22] = crc_data[14] ^ crc_data[24] ^ data_t[0];
assign crc_next[23] = crc_data[15] ^ crc_data[24] ^ crc_data[25] ^ crc_data[30]
^ data_t[0] ^ data_t[1] ^ data_t[6];
assign crc_next[24] = crc_data[16] ^ crc_data[25] ^ crc_data[26] ^ crc_data[31]
^ data_t[1] ^ data_t[2] ^ data_t[7];
assign crc_next[25] = crc_data[17] ^ crc_data[26] ^ crc_data[27] ^ data_t[2] ^ data_t[3];
assign crc_next[26] = crc_data[18] ^ crc_data[24] ^ crc_data[27] ^ crc_data[28]
^ crc_data[30] ^ data_t[0] ^ data_t[3] ^ data_t[4] ^ data_t[6];
assign crc_next[27] = crc_data[19] ^ crc_data[25] ^ crc_data[28] ^ crc_data[29]
^ crc_data[31] ^ data_t[1] ^ data_t[4] ^ data_t[5] ^ data_t[7];
assign crc_next[28] = crc_data[20] ^ crc_data[26] ^ crc_data[29] ^ crc_data[30]
^ data_t[2] ^ data_t[5] ^ data_t[6];
assign crc_next[29] = crc_data[21] ^ crc_data[27] ^ crc_data[30] ^ crc_data[31]
^ data_t[3] ^ data_t[6] ^ data_t[7];
assign crc_next[30] = crc_data[22] ^ crc_data[28] ^ crc_data[31] ^ data_t[4] ^ data_t[7];
assign crc_next[31] = crc_data[23] ^ crc_data[29] ^ data_t[5];
always @(posedge clk or negedge rst_n) begin
if (!rst_n) crc_data <= 32'hff_ff_ff_ff;
else if (crc_clr) //CRC校验值复位
crc_data <= 32'hff_ff_ff_ff;
else if (crc_en) crc_data <= crc_next;
end
endmodule
3.10 udp模块
`timescale 1ns / 1ps
//udp模块
module udp (
input rst_n, //复位信号,低电平有效
//GMII接口
input gmii_rx_clk, //GMII接收数据时钟
input gmii_rx_dv, //GMII输入数据有效信号
input [ 7:0] gmii_rxd, //GMII输入数据
input gmii_tx_clk, //GMII发送数据时钟
output gmii_tx_en, //GMII输出数据有效信号
output [ 7:0] gmii_txd, //GMII输出数据
//用户接口
output rec_pkt_done, //以太网单包数据接收完成信号
output rec_en, //以太网接收的数据使能信号
output [31:0] rec_data, //以太网接收的数据
output [15:0] rec_byte_num, //以太网接收的有效字节数 单位:byte
input tx_start_en, //以太网开始发送信号
input [31:0] tx_data, //以太网待发送数据
input [15:0] tx_byte_num, //以太网发送的有效字节数 单位:byte
input [47:0] des_mac, //发送的目标MAC地址
input [31:0] des_ip, //发送的目标IP地址
output tx_done, //以太网发送完成信号
output tx_req //读数据请求信号
);
//parameter define
//开发板MAC地址 00-11-22-33-44-55
parameter BOARD_MAC = 48'h00_11_22_33_44_55;
//开发板IP地址 192.168.1.10
parameter BOARD_IP = {8'd192, 8'd168, 8'd1, 8'd10};
//目的MAC地址 ff_ff_ff_ff_ff_ff
parameter DES_MAC = 48'hff_ff_ff_ff_ff_ff;
//目的IP地址 192.168.1.102
parameter DES_IP = {8'd192, 8'd168, 8'd1, 8'd102};
//wire define
wire crc_en; //CRC开始校验使能
wire crc_clr; //CRC数据复位信号
wire [ 7:0] crc_d8; //输入待校验8位数据
wire [31:0] crc_data; //CRC校验数据
wire [31:0] crc_next; //CRC下次校验完成数据
//*****************************************************
//** main code
//*****************************************************
assign crc_d8 = gmii_txd;
//以太网接收模块
udp_rx #(
.BOARD_MAC(BOARD_MAC), //参数例化
.BOARD_IP (BOARD_IP)
) u_udp_rx (
.clk (gmii_rx_clk),
.rst_n (rst_n),
.gmii_rx_dv (gmii_rx_dv),
.gmii_rxd (gmii_rxd),
.rec_pkt_done(rec_pkt_done),
.rec_en (rec_en),
.rec_data (rec_data),
.rec_byte_num(rec_byte_num)
);
//以太网发送模块
udp_tx #(
.BOARD_MAC(BOARD_MAC), //参数例化
.BOARD_IP (BOARD_IP),
.DES_MAC (DES_MAC),
.DES_IP (DES_IP)
) u_udp_tx (
.clk (gmii_tx_clk),
.rst_n (rst_n),
.tx_start_en(tx_start_en),
.tx_data (tx_data),
.tx_byte_num(tx_byte_num),
.des_mac (des_mac),
.des_ip (des_ip),
.crc_data (crc_data),
.crc_next (crc_next[31:24]),
.tx_done (tx_done),
.tx_req (tx_req),
.gmii_tx_en (gmii_tx_en),
.gmii_txd (gmii_txd),
.crc_en (crc_en),
.crc_clr (crc_clr)
);
//以太网发送CRC校验模块
crc32_d8 u_crc32_d8 (
.clk (gmii_tx_clk),
.rst_n (rst_n),
.data (crc_d8),
.crc_en (crc_en),
.crc_clr (crc_clr),
.crc_data(crc_data),
.crc_next(crc_next)
);
endmodule
3.10.1 以太网数据接收模块
`timescale 1ns / 1ps
//以太网数据接收模块
module udp_rx (
input clk, //时钟信号
input rst_n, //复位信号,低电平有效
input gmii_rx_dv, //GMII输入数据有效信号
input [ 7:0] gmii_rxd, //GMII输入数据
output reg rec_pkt_done, //以太网单包数据接收完成信号
output reg rec_en, //以太网接收的数据使能信号
output reg [31:0] rec_data, //以太网接收的数据
output reg [15:0] rec_byte_num //以太网接收的有效字数 单位:byte
);
//parameter define
//开发板MAC地址 00-11-22-33-44-55
parameter BOARD_MAC = 48'h00_11_22_33_44_55;
//开发板IP地址 192.168.1.10
parameter BOARD_IP = {8'd192, 8'd168, 8'd1, 8'd10};
localparam st_idle = 7'b000_0001; //初始状态,等待接收前导码
localparam st_preamble = 7'b000_0010; //接收前导码状态
localparam st_eth_head = 7'b000_0100; //接收以太网帧头
localparam st_ip_head = 7'b000_1000; //接收IP首部
localparam st_udp_head = 7'b001_0000; //接收UDP首部
localparam st_rx_data = 7'b010_0000; //接收有效数据
localparam st_rx_end = 7'b100_0000; //接收结束
localparam ETH_TYPE = 16'h0800; //以太网协议类型 IP协议
//reg define
reg [ 6:0] cur_state;
reg [ 6:0] next_state;
reg skip_en; //控制状态跳转使能信号
reg error_en; //解析错误使能信号
reg [ 4:0] cnt; //解析数据计数器
reg [47:0] des_mac; //目的MAC地址
reg [15:0] eth_type; //以太网类型
reg [31:0] des_ip; //目的IP地址
reg [ 5:0] ip_head_byte_num; //IP首部长度
reg [15:0] udp_byte_num; //UDP长度
reg [15:0] data_byte_num; //数据长度
reg [15:0] data_cnt; //有效数据计数
reg [ 1:0] rec_en_cnt; //8bit转32bit计数器
//*****************************************************
//** main code
//*****************************************************
//(三段式状态机)同步时序描述状态转移
always @(posedge clk or negedge rst_n) begin
if (!rst_n) cur_state <= st_idle;
else cur_state <= next_state;
end
//组合逻辑判断状态转移条件
always @(*) begin
next_state = st_idle;
case (cur_state)
st_idle: begin //等待接收前导码
if (skip_en) next_state = st_preamble;
else next_state = st_idle;
end
st_preamble: begin //接收前导码
if (skip_en) next_state = st_eth_head;
else if (error_en) next_state = st_rx_end;
else next_state = st_preamble;
end
st_eth_head: begin //接收以太网帧头
if (skip_en) next_state = st_ip_head;
else if (error_en) next_state = st_rx_end;
else next_state = st_eth_head;
end
st_ip_head: begin //接收IP首部
if (skip_en) next_state = st_udp_head;
else if (error_en) next_state = st_rx_end;
else next_state = st_ip_head;
end
st_udp_head: begin //接收UDP首部
if (skip_en) next_state = st_rx_data;
else next_state = st_udp_head;
end
st_rx_data: begin //接收有效数据
if (skip_en) next_state = st_rx_end;
else next_state = st_rx_data;
end
st_rx_end: begin //接收结束
if (skip_en) next_state = st_idle;
else next_state = st_rx_end;
end
default: next_state = st_idle;
endcase
end
//时序电路描述状态输出,解析以太网数据
always @(posedge clk or negedge rst_n) begin
if (!rst_n) begin
skip_en <= 1'b0;
error_en <= 1'b0;
cnt <= 5'd0;
des_mac <= 48'd0;
eth_type <= 16'd0;
des_ip <= 32'd0;
ip_head_byte_num <= 6'd0;
udp_byte_num <= 16'd0;
data_byte_num <= 16'd0;
data_cnt <= 16'd0;
rec_en_cnt <= 2'd0;
rec_en <= 1'b0;
rec_data <= 32'd0;
rec_pkt_done <= 1'b0;
rec_byte_num <= 16'd0;
end else begin
skip_en <= 1'b0;
error_en <= 1'b0;
rec_en <= 1'b0;
rec_pkt_done <= 1'b0;
case (next_state)
st_idle: begin
if ((gmii_rx_dv == 1'b1) && (gmii_rxd == 8'h55)) skip_en <= 1'b1;
end
st_preamble: begin
if (gmii_rx_dv) begin //解析前导码
cnt <= cnt + 5'd1;
if ((cnt < 5'd6) && (gmii_rxd != 8'h55)) //7个8'h55
error_en <= 1'b1;
else if (cnt == 5'd6) begin
cnt <= 5'd0;
if (gmii_rxd == 8'hd5) //1个8'hd5
skip_en <= 1'b1;
else error_en <= 1'b1;
end
end
end
st_eth_head: begin
if (gmii_rx_dv) begin
cnt <= cnt + 5'b1;
if (cnt < 5'd6) des_mac <= {des_mac[39:0], gmii_rxd}; //目的MAC地址
else if (cnt == 5'd12) eth_type[15:8] <= gmii_rxd; //以太网协议类型
else if (cnt == 5'd13) begin
eth_type[7:0] <= gmii_rxd;
cnt <= 5'd0;
//判断MAC地址是否为开发板MAC地址或者公共地址
if(((des_mac == BOARD_MAC) ||(des_mac == 48'hff_ff_ff_ff_ff_ff))
&& eth_type[15:8] == ETH_TYPE[15:8] && gmii_rxd == ETH_TYPE[7:0])
skip_en <= 1'b1;
else error_en <= 1'b1;
end
end
end
st_ip_head: begin
if (gmii_rx_dv) begin
cnt <= cnt + 5'd1;
if (cnt == 5'd0) ip_head_byte_num <= {gmii_rxd[3:0], 2'd0};
else if ((cnt >= 5'd16) && (cnt <= 5'd18))
des_ip <= {des_ip[23:0], gmii_rxd}; //目的IP地址
else if (cnt == 5'd19) begin
des_ip <= {des_ip[23:0], gmii_rxd};
//判断IP地址是否为开发板IP地址
if ((des_ip[23:0] == BOARD_IP[31:8]) && (gmii_rxd == BOARD_IP[7:0])) begin
if (cnt == ip_head_byte_num - 1'b1) begin
skip_en <= 1'b1;
cnt <= 5'd0;
end
end else begin
//IP错误,停止解析数据
error_en <= 1'b1;
cnt <= 5'd0;
end
end else if (cnt == ip_head_byte_num - 1'b1) begin
skip_en <= 1'b1; //IP首部解析完成
cnt <= 5'd0;
end
end
end
st_udp_head: begin
if (gmii_rx_dv) begin
cnt <= cnt + 5'd1;
if (cnt == 5'd4) udp_byte_num[15:8] <= gmii_rxd; //解析UDP字节长度
else if (cnt == 5'd5) udp_byte_num[7:0] <= gmii_rxd;
else if (cnt == 5'd7) begin
//有效数据字节长度,(UDP首部8个字节,所以减去8)
data_byte_num <= udp_byte_num - 16'd8;
skip_en <= 1'b1;
cnt <= 5'd0;
end
end
end
st_rx_data: begin
//接收数据,转换成32bit
if (gmii_rx_dv) begin
data_cnt <= data_cnt + 16'd1;
rec_en_cnt <= rec_en_cnt + 2'd1;
if (data_cnt == data_byte_num - 16'd1) begin
skip_en <= 1'b1; //有效数据接收完成
data_cnt <= 16'd0;
rec_en_cnt <= 2'd0;
rec_pkt_done <= 1'b1;
rec_en <= 1'b1;
rec_byte_num <= data_byte_num;
end
//先收到的数据放在了rec_data的高位,所以当数据不是4的倍数时,
//低位数据为无效数据,可根据有效字节数来判断(rec_byte_num)
if (rec_en_cnt == 2'd0) rec_data[31:24] <= gmii_rxd;
else if (rec_en_cnt == 2'd1) rec_data[23:16] <= gmii_rxd;
else if (rec_en_cnt == 2'd2) rec_data[15:8] <= gmii_rxd;
else if (rec_en_cnt == 2'd3) begin
rec_en <= 1'b1;
rec_data[7:0] <= gmii_rxd;
end
end
end
st_rx_end: begin //单包数据接收完成
if (gmii_rx_dv == 1'b0 && skip_en == 1'b0) skip_en <= 1'b1;
end
default: ;
endcase
end
end
endmodule
3.10.2 以太网数据发送模块
`timescale 1ns / 1ps
//以太网数据发送模块
module udp_tx (
input clk, //时钟信号
input rst_n, //复位信号,低电平有效
input tx_start_en, //以太网开始发送信号
input [31:0] tx_data, //以太网待发送数据
input [15:0] tx_byte_num, //以太网发送的有效字节数
input [47:0] des_mac, //发送的目标MAC地址
input [31:0] des_ip, //发送的目标IP地址
input [31:0] crc_data, //CRC校验数据
input [ 7:0] crc_next, //CRC下次校验完成数据
output reg tx_done, //以太网发送完成信号
output reg tx_req, //读数据请求信号
output reg gmii_tx_en, //GMII输出数据有效信号
output reg [ 7:0] gmii_txd, //GMII输出数据
output reg crc_en, //CRC开始校验使能
output reg crc_clr //CRC数据复位信号
);
//parameter define
//开发板MAC地址 00-11-22-33-44-55
parameter BOARD_MAC = 48'h00_11_22_33_44_55;
//开发板IP地址 192.168.1.123
parameter BOARD_IP = {8'd192, 8'd168, 8'd1, 8'd123};
//目的MAC地址 ff_ff_ff_ff_ff_ff
parameter DES_MAC = 48'hff_ff_ff_ff_ff_ff;
//目的IP地址 192.168.1.102
parameter DES_IP = {8'd192, 8'd168, 8'd1, 8'd102};
localparam st_idle = 7'b000_0001; //初始状态,等待开始发送信号
localparam st_check_sum = 7'b000_0010; //IP首部校验和
localparam st_preamble = 7'b000_0100; //发送前导码+帧起始界定符
localparam st_eth_head = 7'b000_1000; //发送以太网帧头
localparam st_ip_head = 7'b001_0000; //发送IP首部+UDP首部
localparam st_tx_data = 7'b010_0000; //发送数据
localparam st_crc = 7'b100_0000; //发送CRC校验值
localparam ETH_TYPE = 16'h0800; //以太网协议类型 IP协议
//以太网数据最小46个字节,IP首部20个字节+UDP首部8个字节
//所以数据至少46-20-8=18个字节
localparam MIN_DATA_NUM = 16'd18;
//reg define
reg [6:0] cur_state;
reg [6:0] next_state;
reg [7:0] preamble[7:0]; //前导码
reg [7:0] eth_head[13:0]; //以太网首部
reg [31:0] ip_head[6:0]; //IP首部 + UDP首部
reg start_en_d0;
reg start_en_d1;
reg [15:0] tx_data_num; //发送的有效数据字节个数
reg [15:0] total_num; //总字节数
reg trig_tx_en;
reg [15:0] udp_num; //UDP字节数
reg skip_en; //控制状态跳转使能信号
reg [4:0] cnt;
reg [31:0] check_buffer; //首部校验和
reg [1:0] tx_bit_sel;
reg [15:0] data_cnt; //发送数据个数计数器
reg tx_done_t;
reg [4:0] real_add_cnt; //以太网数据实际多发的字节数
//wire define
wire pos_start_en; //开始发送数据上升沿
wire [15:0] real_tx_data_num; //实际发送的字节数(以太网最少字节要求)
//*****************************************************
//** main code
//*****************************************************
assign pos_start_en = (~start_en_d1) & start_en_d0;
assign real_tx_data_num = (tx_data_num >= MIN_DATA_NUM) ? tx_data_num : MIN_DATA_NUM;
//采tx_start_en的上升沿
always @(posedge clk or negedge rst_n) begin
if (!rst_n) begin
start_en_d0 <= 1'b0;
start_en_d1 <= 1'b0;
end else begin
start_en_d0 <= tx_start_en;
start_en_d1 <= start_en_d0;
end
end
//寄存数据有效字节
always @(posedge clk or negedge rst_n) begin
if (!rst_n) begin
tx_data_num <= 16'd0;
total_num <= 16'd0;
udp_num <= 16'd0;
end else begin
if (pos_start_en && cur_state == st_idle) begin
//数据长度
tx_data_num <= tx_byte_num;
//IP长度:有效数据+IP首部长度
total_num <= tx_byte_num + 16'd28;
//UDP长度:有效数据+UDP首部长度
udp_num <= tx_byte_num + 16'd8;
end
end
end
//触发发送信号
always @(posedge clk or negedge rst_n) begin
if (!rst_n) trig_tx_en <= 1'b0;
else trig_tx_en <= pos_start_en;
end
always @(posedge clk or negedge rst_n) begin
if (!rst_n) cur_state <= st_idle;
else cur_state <= next_state;
end
always @(*) begin
next_state = st_idle;
case (cur_state)
st_idle: begin //等待发送数据
if (skip_en) next_state = st_check_sum;
else next_state = st_idle;
end
st_check_sum: begin //IP首部校验
if (skip_en) next_state = st_preamble;
else next_state = st_check_sum;
end
st_preamble: begin //发送前导码+帧起始界定符
if (skip_en) next_state = st_eth_head;
else next_state = st_preamble;
end
st_eth_head: begin //发送以太网首部
if (skip_en) next_state = st_ip_head;
else next_state = st_eth_head;
end
st_ip_head: begin //发送IP首部+UDP首部
if (skip_en) next_state = st_tx_data;
else next_state = st_ip_head;
end
st_tx_data: begin //发送数据
if (skip_en) next_state = st_crc;
else next_state = st_tx_data;
end
st_crc: begin //发送CRC校验值
if (skip_en) next_state = st_idle;
else next_state = st_crc;
end
default: next_state = st_idle;
endcase
end
//发送数据
always @(posedge clk or negedge rst_n) begin
if (!rst_n) begin
skip_en <= 1'b0;
cnt <= 5'd0;
check_buffer <= 32'd0;
ip_head[1][31:16] <= 16'd0;
tx_bit_sel <= 2'b0;
crc_en <= 1'b0;
gmii_tx_en <= 1'b0;
gmii_txd <= 8'd0;
tx_req <= 1'b0;
tx_done_t <= 1'b0;
data_cnt <= 16'd0;
real_add_cnt <= 5'd0;
//初始化数组
//前导码 7个8'h55 + 1个8'hd5
preamble[0] <= 8'h55;
preamble[1] <= 8'h55;
preamble[2] <= 8'h55;
preamble[3] <= 8'h55;
preamble[4] <= 8'h55;
preamble[5] <= 8'h55;
preamble[6] <= 8'h55;
preamble[7] <= 8'hd5;
//目的MAC地址
eth_head[0] <= DES_MAC[47:40];
eth_head[1] <= DES_MAC[39:32];
eth_head[2] <= DES_MAC[31:24];
eth_head[3] <= DES_MAC[23:16];
eth_head[4] <= DES_MAC[15:8];
eth_head[5] <= DES_MAC[7:0];
//源MAC地址
eth_head[6] <= BOARD_MAC[47:40];
eth_head[7] <= BOARD_MAC[39:32];
eth_head[8] <= BOARD_MAC[31:24];
eth_head[9] <= BOARD_MAC[23:16];
eth_head[10] <= BOARD_MAC[15:8];
eth_head[11] <= BOARD_MAC[7:0];
//以太网类型
eth_head[12] <= ETH_TYPE[15:8];
eth_head[13] <= ETH_TYPE[7:0];
end else begin
skip_en <= 1'b0;
tx_req <= 1'b0;
crc_en <= 1'b0;
gmii_tx_en <= 1'b0;
tx_done_t <= 1'b0;
case (next_state)
st_idle: begin
if (trig_tx_en) begin
skip_en <= 1'b1;
//版本号:4 首部长度:5(单位:32bit,20byte/4=5)
ip_head[0] <= {8'h45, 8'h00, total_num};
//16位标识,每次发送累加1
ip_head[1][31:16] <= ip_head[1][31:16] + 1'b1;
//bit[15:13]: 010表示不分片
ip_head[1][15:0] <= 16'h4000;
//协议:17(udp)
ip_head[2] <= {8'h40, 8'd17, 16'h0};
//源IP地址
ip_head[3] <= BOARD_IP;
//目的IP地址
if (des_ip != 32'd0) ip_head[4] <= des_ip;
else ip_head[4] <= DES_IP;
//16位源端口号:1234 16位目的端口号:1234
ip_head[5] <= {16'd1234, 16'd1234};
//16位udp长度,16位udp校验和
ip_head[6] <= {udp_num, 16'h0000};
//更新MAC地址
if (des_mac != 48'b0) begin
//目的MAC地址
eth_head[0] <= des_mac[47:40];
eth_head[1] <= des_mac[39:32];
eth_head[2] <= des_mac[31:24];
eth_head[3] <= des_mac[23:16];
eth_head[4] <= des_mac[15:8];
eth_head[5] <= des_mac[7:0];
end
end
end
st_check_sum: begin //IP首部校验
cnt <= cnt + 5'd1;
if (cnt == 5'd0) begin
check_buffer <= ip_head[0][31:16] + ip_head[0][15:0]
+ ip_head[1][31:16] + ip_head[1][15:0]
+ ip_head[2][31:16] + ip_head[2][15:0]
+ ip_head[3][31:16] + ip_head[3][15:0]
+ ip_head[4][31:16] + ip_head[4][15:0];
end else if (cnt == 5'd1) //可能出现进位,累加一次
check_buffer <= check_buffer[31:16] + check_buffer[15:0];
else if (cnt == 5'd2) begin //可能再次出现进位,累加一次
check_buffer <= check_buffer[31:16] + check_buffer[15:0];
end else if (cnt == 5'd3) begin //按位取反
skip_en <= 1'b1;
cnt <= 5'd0;
ip_head[2][15:0] <= ~check_buffer[15:0];
end
end
st_preamble: begin //发送前导码+帧起始界定符
gmii_tx_en <= 1'b1;
gmii_txd <= preamble[cnt];
if (cnt == 5'd7) begin
skip_en <= 1'b1;
cnt <= 5'd0;
end else cnt <= cnt + 5'd1;
end
st_eth_head: begin //发送以太网首部
gmii_tx_en <= 1'b1;
crc_en <= 1'b1;
gmii_txd <= eth_head[cnt];
if (cnt == 5'd13) begin
skip_en <= 1'b1;
cnt <= 5'd0;
end else cnt <= cnt + 5'd1;
end
st_ip_head: begin //发送IP首部 + UDP首部
crc_en <= 1'b1;
gmii_tx_en <= 1'b1;
tx_bit_sel <= tx_bit_sel + 2'd1;
if (tx_bit_sel == 3'd0) gmii_txd <= ip_head[cnt][31:24];
else if (tx_bit_sel == 3'd1) gmii_txd <= ip_head[cnt][23:16];
else if (tx_bit_sel == 3'd2) begin
gmii_txd <= ip_head[cnt][15:8];
if (cnt == 5'd6) begin
//提前读请求数据,等待数据有效时发送
tx_req <= 1'b1;
end
end else if (tx_bit_sel == 3'd3) begin
gmii_txd <= ip_head[cnt][7:0];
if (cnt == 5'd6) begin
skip_en <= 1'b1;
cnt <= 5'd0;
end else cnt <= cnt + 5'd1;
end
end
st_tx_data: begin //发送数据
crc_en <= 1'b1;
gmii_tx_en <= 1'b1;
tx_bit_sel <= tx_bit_sel + 3'd1;
if (data_cnt < tx_data_num - 16'd1) data_cnt <= data_cnt + 16'd1;
else if (data_cnt == tx_data_num - 16'd1) begin
//如果发送的有效数据少于18个字节,在后面填补充位
//补充的值为最后一次发送的有效数据
gmii_txd <= 8'd0;
if (data_cnt + real_add_cnt < real_tx_data_num - 16'd1)
real_add_cnt <= real_add_cnt + 5'd1;
else begin
skip_en <= 1'b1;
data_cnt <= 16'd0;
real_add_cnt <= 5'd0;
tx_bit_sel <= 3'd0;
end
end
if (tx_bit_sel == 1'b0) gmii_txd <= tx_data[31:24];
else if (tx_bit_sel == 3'd1) gmii_txd <= tx_data[23:16];
else if (tx_bit_sel == 3'd2) begin
gmii_txd <= tx_data[15:8];
if (data_cnt != tx_data_num - 16'd1) tx_req <= 1'b1;
end else if (tx_bit_sel == 3'd3) gmii_txd <= tx_data[7:0];
end
st_crc: begin //发送CRC校验值
gmii_tx_en <= 1'b1;
tx_bit_sel <= tx_bit_sel + 3'd1;
if (tx_bit_sel == 3'd0)
gmii_txd <= {
~crc_next[0],
~crc_next[1],
~crc_next[2],
~crc_next[3],
~crc_next[4],
~crc_next[5],
~crc_next[6],
~crc_next[7]
};
else if (tx_bit_sel == 3'd1)
gmii_txd <= {
~crc_data[16],
~crc_data[17],
~crc_data[18],
~crc_data[19],
~crc_data[20],
~crc_data[21],
~crc_data[22],
~crc_data[23]
};
else if (tx_bit_sel == 3'd2) begin
gmii_txd <= {
~crc_data[8],
~crc_data[9],
~crc_data[10],
~crc_data[11],
~crc_data[12],
~crc_data[13],
~crc_data[14],
~crc_data[15]
};
end else if (tx_bit_sel == 3'd3) begin
gmii_txd <= {
~crc_data[0],
~crc_data[1],
~crc_data[2],
~crc_data[3],
~crc_data[4],
~crc_data[5],
~crc_data[6],
~crc_data[7]
};
tx_done_t <= 1'b1;
skip_en <= 1'b1;
end
end
default: ;
endcase
end
end
//发送完成信号及crc值复位信号
always @(posedge clk or negedge rst_n) begin
if (!rst_n) begin
tx_done <= 1'b0;
crc_clr <= 1'b0;
end else begin
tx_done <= tx_done_t;
crc_clr <= tx_done_t;
end
end
endmodule
3.10.3 CRC32校验模块
`timescale 1ns / 1ps
//CRC32校验模块
module crc32_d8 (
input clk, //时钟信号
input rst_n, //复位信号,低电平有效
input [ 7:0] data, //输入待校验8位数据
input crc_en, //crc使能,开始校验标志
input crc_clr, //crc数据复位信号
output reg [31:0] crc_data, //CRC校验数据
output [31:0] crc_next //CRC下次校验完成数据
);
//*****************************************************
//** main code
//*****************************************************
//输入待校验8位数据,需要先将高低位互换
wire [7:0] data_t;
assign data_t = {data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]};
//CRC32的生成多项式为:G(x)= x^32 + x^26 + x^23 + x^22 + x^16 + x^12 + x^11
//+ x^10 + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + 1
assign crc_next[0] = crc_data[24] ^ crc_data[30] ^ data_t[0] ^ data_t[6];
assign crc_next[1] = crc_data[24] ^ crc_data[25] ^ crc_data[30] ^ crc_data[31]
^ data_t[0] ^ data_t[1] ^ data_t[6] ^ data_t[7];
assign crc_next[2] = crc_data[24] ^ crc_data[25] ^ crc_data[26] ^ crc_data[30]
^ crc_data[31] ^ data_t[0] ^ data_t[1] ^ data_t[2] ^ data_t[6]
^ data_t[7];
assign crc_next[3] = crc_data[25] ^ crc_data[26] ^ crc_data[27] ^ crc_data[31]
^ data_t[1] ^ data_t[2] ^ data_t[3] ^ data_t[7];
assign crc_next[4] = crc_data[24] ^ crc_data[26] ^ crc_data[27] ^ crc_data[28]
^ crc_data[30] ^ data_t[0] ^ data_t[2] ^ data_t[3] ^ data_t[4]
^ data_t[6];
assign crc_next[5] = crc_data[24] ^ crc_data[25] ^ crc_data[27] ^ crc_data[28]
^ crc_data[29] ^ crc_data[30] ^ crc_data[31] ^ data_t[0]
^ data_t[1] ^ data_t[3] ^ data_t[4] ^ data_t[5] ^ data_t[6]
^ data_t[7];
assign crc_next[6] = crc_data[25] ^ crc_data[26] ^ crc_data[28] ^ crc_data[29]
^ crc_data[30] ^ crc_data[31] ^ data_t[1] ^ data_t[2] ^ data_t[4]
^ data_t[5] ^ data_t[6] ^ data_t[7];
assign crc_next[7] = crc_data[24] ^ crc_data[26] ^ crc_data[27] ^ crc_data[29]
^ crc_data[31] ^ data_t[0] ^ data_t[2] ^ data_t[3] ^ data_t[5]
^ data_t[7];
assign crc_next[8] = crc_data[0] ^ crc_data[24] ^ crc_data[25] ^ crc_data[27]
^ crc_data[28] ^ data_t[0] ^ data_t[1] ^ data_t[3] ^ data_t[4];
assign crc_next[9] = crc_data[1] ^ crc_data[25] ^ crc_data[26] ^ crc_data[28]
^ crc_data[29] ^ data_t[1] ^ data_t[2] ^ data_t[4] ^ data_t[5];
assign crc_next[10] = crc_data[2] ^ crc_data[24] ^ crc_data[26] ^ crc_data[27]
^ crc_data[29] ^ data_t[0] ^ data_t[2] ^ data_t[3] ^ data_t[5];
assign crc_next[11] = crc_data[3] ^ crc_data[24] ^ crc_data[25] ^ crc_data[27]
^ crc_data[28] ^ data_t[0] ^ data_t[1] ^ data_t[3] ^ data_t[4];
assign crc_next[12] = crc_data[4] ^ crc_data[24] ^ crc_data[25] ^ crc_data[26]
^ crc_data[28] ^ crc_data[29] ^ crc_data[30] ^ data_t[0]
^ data_t[1] ^ data_t[2] ^ data_t[4] ^ data_t[5] ^ data_t[6];
assign crc_next[13] = crc_data[5] ^ crc_data[25] ^ crc_data[26] ^ crc_data[27]
^ crc_data[29] ^ crc_data[30] ^ crc_data[31] ^ data_t[1]
^ data_t[2] ^ data_t[3] ^ data_t[5] ^ data_t[6] ^ data_t[7];
assign crc_next[14] = crc_data[6] ^ crc_data[26] ^ crc_data[27] ^ crc_data[28]
^ crc_data[30] ^ crc_data[31] ^ data_t[2] ^ data_t[3] ^ data_t[4]
^ data_t[6] ^ data_t[7];
assign crc_next[15] = crc_data[7] ^ crc_data[27] ^ crc_data[28] ^ crc_data[29]
^ crc_data[31] ^ data_t[3] ^ data_t[4] ^ data_t[5] ^ data_t[7];
assign crc_next[16] = crc_data[8] ^ crc_data[24] ^ crc_data[28] ^ crc_data[29]
^ data_t[0] ^ data_t[4] ^ data_t[5];
assign crc_next[17] = crc_data[9] ^ crc_data[25] ^ crc_data[29] ^ crc_data[30]
^ data_t[1] ^ data_t[5] ^ data_t[6];
assign crc_next[18] = crc_data[10] ^ crc_data[26] ^ crc_data[30] ^ crc_data[31]
^ data_t[2] ^ data_t[6] ^ data_t[7];
assign crc_next[19] = crc_data[11] ^ crc_data[27] ^ crc_data[31] ^ data_t[3] ^ data_t[7];
assign crc_next[20] = crc_data[12] ^ crc_data[28] ^ data_t[4];
assign crc_next[21] = crc_data[13] ^ crc_data[29] ^ data_t[5];
assign crc_next[22] = crc_data[14] ^ crc_data[24] ^ data_t[0];
assign crc_next[23] = crc_data[15] ^ crc_data[24] ^ crc_data[25] ^ crc_data[30]
^ data_t[0] ^ data_t[1] ^ data_t[6];
assign crc_next[24] = crc_data[16] ^ crc_data[25] ^ crc_data[26] ^ crc_data[31]
^ data_t[1] ^ data_t[2] ^ data_t[7];
assign crc_next[25] = crc_data[17] ^ crc_data[26] ^ crc_data[27] ^ data_t[2] ^ data_t[3];
assign crc_next[26] = crc_data[18] ^ crc_data[24] ^ crc_data[27] ^ crc_data[28]
^ crc_data[30] ^ data_t[0] ^ data_t[3] ^ data_t[4] ^ data_t[6];
assign crc_next[27] = crc_data[19] ^ crc_data[25] ^ crc_data[28] ^ crc_data[29]
^ crc_data[31] ^ data_t[1] ^ data_t[4] ^ data_t[5] ^ data_t[7];
assign crc_next[28] = crc_data[20] ^ crc_data[26] ^ crc_data[29] ^ crc_data[30]
^ data_t[2] ^ data_t[5] ^ data_t[6];
assign crc_next[29] = crc_data[21] ^ crc_data[27] ^ crc_data[30] ^ crc_data[31]
^ data_t[3] ^ data_t[6] ^ data_t[7];
assign crc_next[30] = crc_data[22] ^ crc_data[28] ^ crc_data[31] ^ data_t[4] ^ data_t[7];
assign crc_next[31] = crc_data[23] ^ crc_data[29] ^ data_t[5];
always @(posedge clk or negedge rst_n) begin
if (!rst_n) crc_data <= 32'hff_ff_ff_ff;
else if (crc_clr) //CRC校验值复位
crc_data <= 32'hff_ff_ff_ff;
else if (crc_en) crc_data <= crc_next;
end
endmodule
3.11 以太网控制模块
`timescale 1ns / 1ps
//以太网控制模块
module eth_ctrl (
input clk, //系统时钟
input rst_n, //系统复位信号,低电平有效
//ARP相关端口信号
input arp_rx_done, //ARP接收完成信号
input arp_rx_type, //ARP接收类型 0:请求 1:应答
output arp_tx_en, //ARP发送使能信号
output arp_tx_type, //ARP发送类型 0:请求 1:应答
input arp_tx_done, //ARP发送完成信号
input arp_gmii_tx_en, //ARP GMII输出数据有效信号
input [7:0] arp_gmii_txd, //ARP GMII输出数据
//UDP相关端口信号
input udp_gmii_tx_en, //UDP GMII输出数据有效信号
input [7:0] udp_gmii_txd, //UDP GMII输出数据
//GMII发送引脚
output gmii_tx_en, //GMII输出数据有效信号
output [7:0] gmii_txd //UDP GMII输出数据
);
//reg define
reg protocol_sw; //协议切换信号
//*****************************************************
//** main code
//*****************************************************
assign arp_tx_en = arp_rx_done && (arp_rx_type == 1'b0);
assign arp_tx_type = 1'b1; //ARP发送类型固定为ARP应答
assign gmii_tx_en = protocol_sw ? udp_gmii_tx_en : arp_gmii_tx_en;
assign gmii_txd = protocol_sw ? udp_gmii_txd : arp_gmii_txd;
//根据ARP发送使能/完成信号,切换GMII引脚
always @(posedge clk or negedge rst_n) begin
if (!rst_n) protocol_sw <= 1'b1;
else if (arp_tx_en) protocol_sw <= 1'b0;
else if (arp_tx_done) protocol_sw <= 1'b1;
end
endmodule
到了这里,关于FPGA 以太网传输ov5640视频的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!